
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 14, 2020

ASSIGNMENT OF MASTER’S THESIS
 Title: Enhanced suffix arrays implementation and its usage

 Student: Bc. Minh Trieu Quang

 Supervisor: Ing. Jan Trávníček, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2020/21

Instructions

Study the definitions and algorithms of the construction and usage of enhanced suffix array from [1] as a
replacement for suffix trees.
Propose data structures in C++ representing the enhanced suffix array.
Implement a construction algorithm of the enhanced suffix array [1].
Implement algorithms of your choice from [1] that simulates at least three different suffix tree traversals
with enhanced suffix array.
Implement the chosen algorithms using the standard suffix tree traversals.
Test your implementation appropriately and compare the effectiveness of the algorithms of your choice.

References

[1] Abouelhoda, M. I., Kurtz, S., & Ohlebusch, E. (2004). Replacing suffix trees with enhanced suffix arrays. Journal of
discrete algorithms, 2(1), 53-86.

Master’s thesis

Enhanced suffix arrays implementation and
its usage

Bc. Minh Trieu Quang

Department of Theoretical Computer Science
Supervisor: Ing. Jan Trávníček, Ph.D.

April 17, 2020

Acknowledgements

I would like to thank my supervisor Ing. Jan Trávníček, Ph.D. for his incredible
guidance, patience, and support during the entire time on writing this thesis.

My thanks also go to my dear friends with whom I have been studying
alongside for five years.

Last but not least, I would like to give a big thanks to my family: my
parents and my brother for supporting me throughout writing this thesis, not
to mention through my studies on CTU FIT.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on April 17, 2020

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Quang Minh Trieu. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Trieu, Quang Minh. Enhanced suffix arrays implementation and its usage.
Master’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2020.

Abstrakt

Hlavní nevýhodou suffixového stromu je velká paměťová náročnost. Jedna
z paměťově efektivnějších struktur je suffixové pole, a nedávno se ukázalo, že
každý algoritmus řešený suffixovým stromem lze nahradit stejně časově efek-
tivním algoritmem využívajícím suffixového pole, pokud jej rozšíříme o další
informace a struktury.

Řešení navrhuje datovou strukturu vylepšeného suffixového pole (ESA)
v C++ a implementaci vybraných algoritmů, které simulují tři odlišné prů-
chody suffixového stromu. Toto řešení je důkladně otestováno, vyzkoušeno a pro-
běhlo experimentální vyhodnocení algoritmů využívající suffixový strom a na-
vrhovanou datovou strukturu.

Klíčová slova suffixové pole, rozšířené sufixové pole, suffixový strom, lcp
tabulka, vyhledávání v textu, zpracovávání textu

vii

Abstract

The suffix tree has a major drawback having a large space consumption. The
more space efficient data structure than suffix tree is a suffix array, and re-
cently it was shown that every algorithm using a suffix tree can be replaced
with an algorithm based on a suffix array in the same time complexity if the
suffix array is enhanced with additional information and structures.

The result is a proposed data structure of the enhanced suffix array (ESA)
in C++ and implementations of the chosen algorithms that simulates three dif-
ferent suffix tree traversals. This solution is thoroughly tested, experimented
and compared with the algorithms using the suffix tree and its standard traver-
sals.

Keywords suffix array, enhanced suffix array, suffix tree, lcp table, pattern
matching, text processing

viii

Contents

1 Introduction 1

2 Preliminaries 3
2.1 Alphabet, String . 3
2.2 Graph . 4

3 Suffix Tree 5
3.1 Definition . 5
3.2 Construction . 7
3.3 Ukkonen’s algorithm . 8

3.3.1 Suffix extensions . 8
3.3.2 Suffix links . 9
3.3.3 Trick: Skip/count . 12
3.3.4 Edge-label compression 13
3.3.5 Trick: Once a leaf, always a leaf 14
3.3.6 Trick: Halt condition . 14
3.3.7 Putting it together . 15

3.4 Applications . 15

4 Enhanced Suffix Array 25
4.1 BWT table . 26
4.2 LCP array . 26

4.2.1 Lcp-intervals . 26
4.2.2 Lcp-interval tree . 27

4.3 Child-table . 30
4.3.1 Construction . 31
4.3.2 Determining child intervals 33

4.4 Suffix link table . 33
4.4.1 Construction . 35

ix

4.5 Applications . 36
4.5.1 Bottom-up traversals . 37
4.5.2 Top-down traversals . 38
4.5.3 Traversal with suffix links 40

5 Implementation 43
5.1 Suffix Tree . 43
5.2 Enhanced Suffix Array . 44

5.2.1 Suffix Array . 44
5.2.2 LCP Array . 45
5.2.3 Space reduction of child-table 47
5.2.4 RMQ for the suffix link table 48
5.2.5 Space complexity . 49
5.2.6 Usage . 49

6 Testing 53
6.1 Catch2 . 53
6.2 Unit testing . 54

7 Experimental results 55
7.1 Setup and Environment . 55
7.2 Data sets . 55
7.3 Construction . 56
7.4 Performance of Algorithms . 57

7.4.1 Computing maximal repeated pairs 57
7.4.2 Ziv-Lempel decomposition 57
7.4.3 Pattern searching . 58
7.4.4 Shortest unique substrings 58
7.4.5 Computing matching statistics 59

Conclusion 61
Evaluation of the thesis . 61
Future Work . 61
Contribution . 62

Bibliography 63

A Acronyms 67

B Contents of enclosed CD 69

x

List of Figures

3.1 The suffix tree for S = acaaacatat|. 6
3.2 The suffix tree for string S = abc| and string S = aaa| 7
3.3 An example of extending by the suffix extensions rules 9
3.4 An example of suffix tree of S = banana| with suffix links. 10
3.5 An example of edge-label compression on the suffix tree with S =

banana|. 14

4.1 An example of lcp-interval tree of string S = acaaacatat|. 27

xi

List of Tables

4.1 Suffix array of string S = acaaacatat| enhanced with the lcp array
and child-table . 30

4.2 ESA of string S = acaaacatat| with additional suflink table . . . 35

7.1 Data sets used for experiments sorted by the file size 56
7.2 Running time (in seconds) and space requirements (in kB). 56
7.3 Measurement of the maximal repeated pairs computation. The

running time is in seconds, as for the columns, esa represents the
ESA method and st is the Suffix Tree. #reps gives the number of
repeats of length ≥ ℓ. 57

7.4 Measurement of Ziv-Lempel decomposition. The running time is
in seconds. 57

7.5 Measurement of the pattern searching. The running time is in
seconds. 58

7.6 Measurement of the pattern searching. The running time is in
seconds. The column cnt indicates the number of shortest unique
substrings, len indicates the length of the shortest substrings, pro-
cessed indicates the number of processed lcp-intervals and the total
is the number of lcp-intervals in lcp-intrerval tree. 58

7.7 Measurement of the matching statistics computation. The running
time is in seconds. 59

xiii

Chapter 1
Introduction

String processing might seem like a basic task at first glance, but it is not
that trivial and plays an important key in a lot of human fields. The most
prominent field is bioinformatics, for example a genome analysis, but it can
also be found in compression or musicology.

It is heavily studied for the last few decades and a lot of algorithms and
data structures are being invented to support the run time or space require-
ments. The suffix tree is undoubtedly one of the most powerful data structure
in string processing, for it can be used to efficiently solve many string process-
ing problems.

Nonetheless, suffix trees suffer from a huge drawback, which makes them
not as widespread as one should expect [1]. First, the space requirements of a
suffix tree is quite large. Second, suffix trees have a poor locality of memory
reference, causing a significant efficiency loss on caching architectures.

There are more space efficient data structures than suffix tree, and the
most prominent one is the suffix array introduced by Manber and Myers [2].
It can be constructed in O(n) in the worst case by constructing the suffix tree
[3] and placing the leaf numbers in order. However, this still require a huge
amount of space to construct the suffix tree. Fortunately, the suffix arrays can
be directly constructed in linear time [4, 5, 6].

Abouelhod et al. [1] showed that every algorithm using a suffix tree can be
replaced with an algorithm using a suffix array by enhancing it with additional
data structures. This is very beneficial since the data are only getting larger.

First, we go through the definition and construction of a suffix tree, break
the chosen algorithm into the types of traversal, then we focus on the suffix
arrays and enhancing it with additional information, and finally describe the
equivalent algorithm which keeps the same time complexity, but improving
the space requirements.

Last but not least, the experimental results and comparison between the
two data structures and the algorithms are presented in the Chapter 7 Exper-
imental results.

1

Chapter 2
Preliminaries

This chapter presents the basic notions which are further to be used on build-
ing the foundation of the enhanced suffix array. More specific notions are
defined in the following chapters. The basic definitions are based on [1, 7, 8].

2.1 Alphabet, String
Definition 2.1 (Alphabet). Alphabet is a non-empty finite ordered set of
characters denoted by the Σ.

Note 1. We will suppose that the size of the alphabet is a constant and that
n < 232. Therefore the integer in the range [0, n] can be stored in 4 bytes.

Definition 2.2 (String). String is a finite sequence of characters over Σ. The
set of all strings over Σ is denoted as Σ∗. The set of non-empty strings Σ∗\{ϵ}
is denoted Σ+.

A length n of a string S is defined as the length of the sequence of characters
of the S and is denoted by |S|. A character at index i of S, for 0 ≤ i < n, is
denoted as S[i].

Furthermore, we denote S[i..j] as a substring starting with the character at
the position i and ending with the character at position j. It is also sometimes
denoted by a pair (i, j) of positions.

Definition 2.3 (Lexicographic order). The lexicographic ordering, denoted
by ≤, is an ordering on strings induced by an ordering on the characters. It
is defined as follows. Let x = x[0..n− 1], y = y[0..m− 1] ∈ Σ∗. The x < y, iff
one of the condition holds:

• n < m and x[0..n− 1] = y[0..n− 1],

• x[0..i− 1] = y[0..i− 1] and x[i] < y[i], for 0 < i ≤min(n, m).

3

2. Preliminaries

Definition 2.4 (Concatenation). The concatenation of two strings x and y
is the string composed of the characters of x followed by the characters of y.
It is denoted as xy or x · y.

Definition 2.5 (Sentinel character). A sentinel character | is assumed to be
an element of Σ and is considered to be the largest of all other elements, i.e.
c < | for every c ∈ Σ \ {|}, but does not occur in S.

Definition 2.6 (Prefix). A prefix u of a string S if there exists a word v
(possibly empty) such that S = uv

Definition 2.7 (Suffix). A suffix u of a string S if there exists a word v
(possibly empty) such that S = vu

2.2 Graph
Before diving deeper, let’s present some basic notions of graph theory that
builds up the suffix tree. The definitions are based on [9].

Definition 2.8 (Graph). A graph G is a pair (V, E), where V is a non-empty
finite set of nodes and E is a set of edges. An edge in a graph is denoted as a
set {u, v}. As for a directed graph, an edge is a pair (u, v) such that the edge
is leaving u and entering v.

Definition 2.9 (Path, cycle). A path P is a sequence of nodes (v0, v1,. . . ,vn),
n ≥ 1 if {vi, vi + 1} is an edge for every vi ∈ P , where 1 ≤ i ≤ n. A cycle is
such a path (v0, v1,. . . ,vn) that starts and ends with the same node.

Definition 2.10 (Directed acyclic graph). A directed acyclic graph (DAG) is
a graph that doesn’t contain any cycle.

Definition 2.11 (Degree). Let G = (V, E) be a graph and v ∈ V its node.
A degree deg(v) of a node v denotes the number of edges in graph G incident
with v.

Definition 2.12 (Tree, rooted tree). A tree is an acyclic connected graph.
Any node of a tree can be selected as a root. Such a tree is called rooted tree.

Definition 2.13 (Labelled tree). A labelled tree is a tree, where every node
n is labelled by a symbol c ∈ Σ.

Definition 2.14 (Leaf). A leaf in a tree T = (V, E) is a node n ∈ V that has
deg(n) = 1. Otherwise, it is called an internal node.

4

Chapter 3
Suffix Tree

A suffix tree is a data structure that is built upon a string. It is considered
one of the most important data structures in string processing, as it can be
used to solve many string problems in linear time, not just exact matching
which can be solved by Knuth-Morris-Pratt [10] or Boyer-Moore algorithms
[11]. The most prominent field of usage is genome analysis in bioinformatics
since the human genome is very large and do not change. The applications
are described at the end of the chapter. In the following sections, we’ll have a
look at the definition and the construction of a suffix tree. The proofs, lemmas
and theorems are based on [3].

3.1 Definition
A suffix tree is a compacted suffix trie. We can look at suffix trie as a simple
deterministic automaton that recognizes the suffixes of a string S [12], where
terminal states are corresponding to the suffixes of the string S.

However, a suffix trie can lead to a quadratic memory space according
to the length of the string S. This drawback is avoided in suffix tree by
compressing the nodes of degree 1 that are not terminal. Here’s the formal
definition:

Definition 3.1 (Suffix Tree). A suffix tree T of a string S is a directed rooted
tree with exactly n leaves numbered 0 to n−1. Each internal node, other than
the root, has at least two children and each edge is labelled with a non-empty
substring of S.

Yet there is no guarantee that suffix tree of any arbitrary string S exists.
The problem occurs if any suffix is a prefix of another suffix. For example a
string S =aacaaca, where the suffix S[3..|S| − 1] = aca is a prefix of a suffix
S[1..|S| − 1] = acaaca.

5

3. Suffix Tree

To prevent this problem, the last character of the string should not occur
anywhere else in the string. This is usually solved by appending the sentinel
character to the string (see Definition 2.5).

In order to avoid any further confusion in the future, string S will be
implicitly meant as S|.

Definition 3.2 (Path label of a node). A path label of a node v is a concate-
nation of the labels of every edge leading from the root of T to the node v.
Thus, every suffix Si = S[i..|S| − 1] corresponds to each of the leaf i of the
suffix tree T .

Remark 3.1. No two edges out of a node can have edge-labels beginning with
the same character.

The internal nodes can be viewed as a common prefix of two or more
suffixes. An example of a suffix tree can be seen in Figure 3.1.

10

79

| at|

51

aa
ca

ta
t| tat|

40

aa
ca

ta
t| tat|

32

ac
at

at
| catat|

a ca
a

ca

t |

Figure 3.1: The suffix tree for S = acaaacatat|.

Proposition 3.1 (Number of nodes). The suffix tree T of a string S of length
n has at least n + 1 nodes and at most 2n− 1 nodes.

Proof of minimum. Let S contain only unique characters. That means there
is no need for internal nodes, i.e. no need for any branches. There are n
suffixes and for every suffix there is a leaf. Therefore, the minimum is n leaves
and one root node, which makes it n + 1.

Proof of maximum. Every internal node propose a branch. When a new
branch is created, it must eventually lead to an extra new leaf. Suppose
we have n internal nodes, then there must be n + 1 leaves. From the suffix
tree properties, there is only n leaves, so the internal nodes are bounded by

6

3.2. Construction

the n−2. Hence, the maximum is one root, n leaves and at most n−2 internal
nodes, which makes it 1 + n + (n− 2) = 2n− 1 nodes.

The difference can be seen on the figure 3.2, where the left suffix tree (a.)
reaches the minimum number of nodes and the left (b.) reaches the maximum.

a.

3210

ab
c|

bc
| c| |

b.

3

2

10
a| |

a

|

a

|

Figure 3.2: The suffix tree for string S = abc| and string S = aaa|

3.2 Construction

Naive algorithm

A naive algorithm is very straight-forward. Suppose we have a string S of
length n. We start by inserting a suffix S0 = S[0...n − 1] into the tree. For
every suffix Si = S[i...n−1], where 0 < i < n, we insert into a tree by matching
the characters of the suffix with the existing path from root until no further
matches are possible. This matching path is effectively unique (Remark 3.1)
and ends at some point. It can be either a node w or in the middle of an edge
between (u, v).

• If it’s the node, create a new edge (w, i) ending to a leaf labelled with i
representing the suffix Si.

• If it ends in the middle of an edge, we break it into two edges (u, w) and
(w, v) by inserting a new node w. The edge (u, w) would be labelled
with the part of (u, v) that matched with the suffix Si and (w, v) would
be the rest. Afterwards, we create a new edge and a leaf as described in
the previous case.

As we can see, building the tree with the naive method above will take in
the worst case O(n2).

7

3. Suffix Tree

Linear-time algorithm
The first linear-time algorithm was given by Weiner [13], or at least explicitly
introduced. Following this work, a more space efficient algorithm was given
by McCreight [14] a few years later. Afterwards, Ukkonen [15] developed an
algorithm based on different intuitive ideas, that has all the advantages of
McCreight’s algorithm, although these two methods are relatively very close
to each other. Recently, Kurtz [16] presented an improved implementation of
linear time construction that reduces the space requirements .

Nonetheless, let’s take a look at Ukkonen’s algorithm in the next section.
It was implemented for the comparison with the enhanced suffix array, for a
simple reason. It’s easy to understand and uses less memory in practice than
McCreight’s algorithm.

Despite the fact that the original algorithm is described in terms of au-
tomata, the following algorithm will be described as Gusfield [3] does.

3.3 Ukkonen’s algorithm
Ukkonen at first presented an inefficient algorithm running in O(m3), which
is then being optimized with certain observations and tricks to obtain the
linear solution. We are going to present the algorithm in the same manner
and gradually introduce the tricks to understand how Ukkonen reached the
claimed linear time.

To build a suffix tree T for string S of length m, we split the process
into m phases. Each phase for each character of the S. Let i be the current
phase, and let’s denote the Ti as a suffix tree of S[0..i]. At the end of phase
i, we’ll have a tree Ti. For every phase, we’ll proceed i extensions, one for
each character in the current prefix. At the end of every extension j, it is
ensured that S[j..i] is in the tree Ti. The pseudocode can be seen below in the
Algorithm 3.3.1.

3.3.1 Suffix extensions
Let β = S[j...i − 1]. In the extension j, when the algorithm finds the end of
the β, it extends this suffix according to one of the rules described in [3]:

Rule 1 In the current tree, the path β ends at a leaf. Update the leaf edge
by appending a character S[i].

Rule 2 No path from the end of string β starts with character S[i]. Split the
edge and create a new internal node if necessary, then add a new leaf
with an edge labelled with character S[i].

Rule 3 The path β · S[i] exists in the current tree, no actions are taken.

8

3.3. Ukkonen’s algorithm

Algorithm 3.3.1: High Level Ukkonen’s algorithm
Input : string S of length n
Output: tree Tn

1 construct tree T0 which consists of a root and first character
2 for i = 1 to n− 1 do
3 begin phase i
4 for j = 0 to i do
5 begin phase j
6 in the current tree find the end of the path from the root

labelled S[j..i− 1]. If necessary, extend the path by adding
character S[i], thus ensuring that string S[j..i] is in the tree.

7 return Tn

abc

bc

c

Rule 1

abcx

bc

c

S = abcxab|
i

j

abcx

bcx

cx

abcx

bcx

cxx

S = abcxab|

Rule 3

i

j

S = abcxab|

abcxab
bcxab

cxab
xab

Rule 2

i

j

abcxab
bcxab

cxab
xab

Figure 3.3: An example of extending by the suffix extensions rules

3.3.2 Suffix links
The most important element of speeding up the algorithm is to use the suffix
links. This allow the algorithm to lower the time complexity of phase i to
Θ(i), thus making the whole algorithm Θ(n2).

9

3. Suffix Tree

Definition 3.3 (Suffix link). Let xα be a string, where x is a single character
and α the (possible empty) substring. Furthermore, let’s denote a node u in
the suffix tree by α if its path label is α.

A suffix link is a pointer from xα to α. The suffix link of a node v is often
denoted as a function s(v).

If α is an empty substring, then the suffix link s(x) is the root of a tree.
The root node itself is not considered an internal and therefore doesn’t have
any suffix link.

1 3

5

0

2 4

6

a

na

na
| |

|

na

na
| |

|
ba

na
na

|

Figure 3.4: An example of suffix tree of S = banana| with suffix links.

The definition alone doesn’t imply that every internal node has a suffix
link, or even, have only one. This is established in the following lemmas.

Lemma 3.1. Assume the algorithm is processing an extension j of phase i+1.
If a new internal node v with path label S[j..i + 1] is created, then either the
path label S[j + 1..i + 1] exists in the current tree or an internal node at the
end of string S[j..i + 1] will be created in extension j + 1 of the same phase
i + 1.

Proof. New internal node is created only if the extension Rule 2 is applied.
In the current extension j of phase i + 1, it has to find S[j..i] and insert a
new internal node v after such path. This means, that there is some character
c, which is different from S[i + 1] and continues the path. Such continuation
must exist, otherwise the Rule 2 could not have been applied.

10

3.3. Ukkonen’s algorithm

Consider now extension j + 1 of phase i + 1. The S[j + 1..i] was already
added in extension j + 1 of phase i, therefore the path exists and has a con-
tinuation with character c. If c is the only continuation in the path, then
a new internal node w will be created at the end of S[j + 1..i]. If there is
another continuation, then the path S[j +1..i] must have ended at an internal
node.

Lemma 3.2. Assume the algorithm is processing an extension j of phase i+1,
then any newly created internal node will have a suffix link from it by the end
of the next extension.

Proof. By the induction on number of phases.
Base case: T0 doesn’t contain any internal nodes.
Inductive case: suppose that at the end of phase i, every internal node has

a suffix link, and consider phase i + 1. By Lemma 3.1, when a new node v
is created in extension j, the node s(v) will be found or created in extension
j + 1. The last extension of a phase will not create any new internal nodes,
so all suffix links created in phase i + 1 are known by the end of the phase,
and therefore Ti+1 has all its suffix links.

With these two lemmas, we have proved the existence of suffix links for
each internal node.

Theorem 3.1. Given a suffix tree Ti, for any internal node v with a label xα,
there always exists one node w of Ti with path label α.

Next, let’s show how to use suffix links to reduce the time complexity
when performing the extensions. Let’s assume the algorithm is starting at
phase i + 1. We use the same description from [17] which is called extension
algorithm:

Extension 0, phase i + 1: The first suffix to be inserted in the tree is S[0..i+
1]. To insert the character S[i + 1], we have to locate the S[0..i], which
is so far the longest string in the tree, therefore it must end at a leaf.
By keeping a pointer to the leaf containing the full string, this extension
can be done in constant time. Recall that Rule 1 always extends the
suffix from S[0..i] to S[0..i + 1].

Extension 1, phase i + 1: In order to find S[1..i], we walk up one node to
internal node v. Let α be label forming the edge between the the node v
and the leaf. From there, we follow the suffix link of v. Once in s(v) we
walk down the path labelled with α until we reach the end of the path
S[1..i]. Here we perform the relevant suffix extension (it is guaranteed
the path exists but doesn’t have to be composed of one single edge) and
insert S[i + 1].

11

3. Suffix Tree

Extension j > 1, phase i + 1: The procedure is the same as in the extension
1. The only difference is, that the end of S[j..i] may be at an internal
node having a suffix link. In such case, the algorithm will follow this
suffix link.

3.3.3 Trick: Skip/count

With just reducing the work from the root to s(v) is not enough to achieve the
linear-time bound yet. Even with the proper implementation of suffix links, it
would still be cubic. In each extension, the algorithm makes the comparisons
equal to the length of the string which is very time consuming. By applying
this trick, it will help us find the place to append the new character S[i+1] in
phase i + 1 very quickly. Therefore, it will reduce the complexity of walking
on the tree to be equal to the number of nodes on the path, rather than the
number of characters on the path.

For this trick to work properly, assume these two operations: (1) retrieval
of the length of the edge-label, (2) extraction of any character from S at any
given position. Both of the operations is assumed to take constant time.

Suppose we are at extension j of phase i + 1 at node s(v). Let S[j..i] be
α and length be n. Recall, there must be a path α from s(v) and from the
properties of suffix tree, there cannot be more edges out of this node starting
with the same character. Let p be the number of characters on this edge. We
compare the length p and n. If p < n, simply skip to the node at the end of
the edge and set n = n−p, and the next character on the string to be matched
is q = p + 1. At the following node find similarly the next outgoing edge. In
general, when the algorithm finds the next edge on the path, it compares the
length. When p < n, it skips to the node at the end of the edge, sets n = n−p
and q = q + p, and search for the next edge starting with the character q and
this continues in the same manner.

Eventually, the p will be larger or equal to n, then the algorithm skips
to the character n on the edge and quits, assuring the α ends on that edge
exactly n characters down its label.

Before showing how does this trick reduce the running time, let’s define
the node-depth.

Definition 3.4 (Node-depth). Node-depth of a node v is a number of nodes
on the path from the root to v. The current node-depth of the algorithm
is the node-depth of the node most recently visited by the algorithm.

Lemma 3.3. Let (v, s(v)) be a suffix link traversed in algorithm at extension
j of phase i + 1. Then node-detph of v is greater than the node-depth of s(v)
at most by one.

12

3.3. Ukkonen’s algorithm

Proof. Consider the path from v and s(v). Let the path label of v be xβ, then
the path label to s(v) must be β. Because xβ is a prefix of path to v and β
to s(v), it follows that the suffix link from any internal ancestor of v goes to
an ancestor of s(v). If β is a non-empty string, then s(v) is an internal node,
otherwise it is root. By the definition of suffix link, no two ancestor internal
nodes of v can receive the same suffix link. Thus, the only extra ancestor v
(without those corresponding to ancestors of s(v)) can have is an internal node
whose path label is x. Therefore, the node-depth of v is at most one more
than s(v).

Theorem 3.2. Utilizing the skip/count technique, any phase of Ukkonen’s
algorithm takes O(n) time.

Proof. During the extension j of phase i, the algorithm walks up to a node v,
traverses the suffix link to s(v) and from there walks down some number of
nodes applying the suffix extension rules. It was already established, that ev-
ery operation takes constant time except for the down-walking. Let’s examine
the change in the node-depth over the phase.

When the algorithm performs an up-walk, the current node-depth de-
creases by one. After following the suffix link, it decreases by one again.
In the down-walk step, the current node-depth is increased by some number
bounded by the height of the current tree Ti, which cannot exceed n. Hence,
the total amount of work processing the phases in algorithm is O(n).

To summarize what was shown, by applying approprietly the suffix links
and the skip/count trick, the Ukkonen’s algorithm can be done in O(m2) time.

3.3.4 Edge-label compression
There is an important obstacle which cannot be taken lightly. As of this
moment, the suffix tree may require Θ(n2) space.

Consider a string S = {abcdefghijklmnopqrstuvwxyz}. The suffix tree
for S will have 26 edges from the root, which makes the sum of characters of
the edge labels proportional to n2.

To reduce the space usage, instead of storing the whole substring in the
edge, store the pair of indices pointing to the start and the end position in
string S. This labelling technique is called edge-label compression and by
doing so, each edge will have a constant amount of memory, thus reducing it
asymptotically to Θ(n). This scheme will also help the next tricks to shrink
down the time complexity. The visualization of a compressed edge-label can
be seen in Figure 3.5.

With this scheme, the suffix extension would change accordingly:

Rule 1 Adding a character S[i + 1] will just update the edge label (j, i) to
(j, i + 1).

13

3. Suffix Tree

1 3

5

0

2 4

6

a
na

na
| |

|

na

na
| |

|

ba
na

na
|

1 3

5

0

2 4

6

(1,
1)

(2
,3

)
(4

,6
) (6,6)

(6,6)

(2,3)

(4
,6

) (6,6)

(6,6)

(0
,6

)

Figure 3.5: An example of edge-label compression on the suffix tree with S =
banana|.

Rule 2 Consider an edge (u1, u2) with edge label (i, j), where a new internal
node v will be inserted at position k. Rule 2 will create three new edges:
(u1, v) with label (j, k), (v, u2) with label (k + 1, i) and (v, j) with label
(i + 1, i + 1).

Rule 3 No changes are made.

Finally, two more speed-up tricks in the combination with the previous
ones, and we’ll get immediately the desired linear time bound. It could seem
that in a given phase, the extensions are being applied in unordered manner,
however it is not true. Application of suffix extensions rules actually happens
in order, i.e. first the Rule 1 is applied, then Rule 2 and finally Rule 3. This
fact is very important to state, because the following concepts are built upon
this observation.

3.3.5 Trick: Once a leaf, always a leaf
Once the leaf j is created, it will remain being a leaf throughout the algorithm.
Recall the suffix extensions – no rules modify the leaf label. In phase i + 1,
according to the Rule 1, we just extend the leaves by S[i + 1]. Based on
this observation, we can reduce the work further. Eventually, the label end
number of the leaf would be eventually updated to n. Hence there is no need
of explicitly updating the label of a leaf node in every phase. We can just set
the end point to ∞, i.e., every edge leading to a leaf can be labelled as (j,∞)
in the intermediate phase.

3.3.6 Trick: Halt condition
The halt condition or ”Rule 3 is a show stopper” [3] reads as follows: If
Rule 3 is applied in extension j of phase i + 1, then it will also be applied in
the next extensions of the same phase, i.e. if the suffix S[j..i+1] is in the tree,

14

3.4. Applications

therefore the string S[j + 1..i + 1], S[j + 2..i + 1],...,S[i + 1..i + 1] must also
be in the tree. We simply can just stop the current phase of the algorithm
whenever the Rule 3 is applied. The phase is said to be built implicitly.
Explicit extensions are then the one built by the algorithm (Rule 2).

3.3.7 Putting it together
Suppose that Rule 1 is applied to l extensions of phase i + 1 and after the
extension l, the Rule 2 will be applied. This is being applied until some
extension r, when Rule 3 is finally being applied from extension r + 1 to
extension i + 1. The value l is non-decreasing and is equal to the number of
current leaves in the tree. Hence, the value r is equal to l plus the number of
current internal nodes, and the next phase can start at extension r because
the r − 1 previous extensions were all implicit. The key point is that when
starting a new phase i + 2, we already know where r ends, and because r was
the last explicit extension computed in phase i + 1, we can execute the suffix
extension rule for repeated extension r in the phase i + 2 without any up-
walking, suffix link traversals or node skipping, so the first explicit extension
in any phase takes only constant time.

With all the tricks correctly used, Ukkonen’s algorithm builds a suffix tree
in O(n) total time.

3.4 Applications
The suffix tree has a wide variety of usage in solving the string problems, as
mentioned before. Gusfield [3] devoted a whole chapter to the applications of
suffix tree in his book. Furthermore, these applications can be classified into
the different types of traversals:

Bottom-up traversal a traversal which goes from leaves to root

Top-down traversal a traversal which goes in top-down manner

Traversal with suffix links a traversal utilizing the suffix links

Next, we’ll present some chosen algorithms and show what kind of traversal
they use.

Finding maximal repeated pairs
The computation of maximal repeated pairs plays a very important key in the
study and analysis of genomes. The study shows that 50% of the 3 billion
of human genome consist of repeats. 11% of mustard weed genome contains
repeats, 7% of the worm genome and 3% of the fly genome are repeats [18].

15

3. Suffix Tree

Definition 3.5 (Repeated pair). A pair ((i1, j1), (i2, j2)) is a repeated pair iff
(i1, j1) ̸= (i2, j2) and S[i1..j1] = S[i2..j2]. The length of such pair is j1− i1 +1.
A repeated pair is called left maximal if S[i1−1] ̸= S[i2−1] and right maximal
if S[j1 + 1] ̸= S[j2 + 1]. A repeated pair is called maximal if it’s left and right
maximal.

Definition 3.6 (Repeat). A substring ω of S is a (maximal) repeat if there
is a (maximal) repeated pair ((i1, j1), (i2, j2)) such that ω = S[i1..j1]. A
supermaximal repeat is a maximal repeat that never occurs as a substring of
any other maximal repeat.

For example, consider the string S = xabcyiizabcqabcyr, where there are
three occurences of the substring abc at positions 1, 8 and 12. The first and
the second occurrence form a maximal pair, the second and third also form a
maximal pair, whereas the first and third don’t, because the occurrences are
not right maximal. The occurrences of abcy also form a maximal pair.
Note 2. The definition allows two substrings in a maximal pair to overlap each
other. For example the string aabaabaa which contains a maximal repeat
aabaa.

Using a suffix tree and bottom-up traversal, it is possible to find all the
maximal repeated pairs in O(n) for a string of length n. The following lemma
states a necessary condition for a substring to be a maximal repeat.

Lemma 3.4. Let T be the suffix tree for string S. If a string α is a maximal
repeat in S, then α is the path label of a node v in T .

Proof. If α is a maximal repeat then there must be at least two occurrences
of α in the string S, where the character to the right of the first occurrence
differs from the right character of the second occurrence. Hence, α is a path
label of a node v in T .

Now we know that to find maximal repeated pairs, we only need to consider
the internal nodes of the suffix tree T . However, it is not yet clear which nodes
corresponds to the maximal repeat.

Definition 3.7 (Left character). Consider a string S of length n. For each
position i, 0 < i < n in the string, character S[i− 1] is a left character of i.

Definition 3.8 (Left diverse). A node v of T is left diverse if at least two
leaves in v’s subtree have different left characters. By definition, a leaf cannot
be left diverse. Note that left diversity propagates upward, so if v is diverse,
so are all v’s ancestors.

Theorem 3.3. The node v with a path label α is a maximal repeat iff v is
left diverse.

16

3.4. Applications

Proof. We’ll show both implications:

1. (⇒): Suppose α is a maximal repeat. Then it participates in a maximal
pair, therefore the occurrences of α must have distinct left characters.
Hence v must be left diverse.

2. (⇐): Suppose v is left diverse. That means there are substrings xα and
yα in S, where x and y are distinct characters. Let p be a character that
follows the first substring and p′ a character that follows the second.
If p′ ̸= p, then α is a maximal repeat and the theorem is proved.
Suppose two substrings are xαp and yαp. Since v is a (branching) node,
there must be a substring αq in S for some character q ̸= p. If this
occurence is preceded by character x, then it forms of maximal pair
with string yαp, if it is preceded by y, then it forms in a maximal pair
with xαp. In either case, α cannot be preceded by both x and y, because
v is left diverse. Hence, α must be part of a maximal pair.

The general idea is to record the left character for each leaf. When travers-
ing the tree in a bottom-up manner, for each node v and character c, record
the leaf numbers below v whose left character is c. The pseudocode of the
algorithm is seen in Algorithm 3.4.1.

Algorithm 3.4.1: Find all maximal repeated pairs
Input : suffix tree T for string S
Output: list of all maximal repeated pairs

1 pairs← ∅
2 Traverse T in a bottom-up manner
3 for each node v with path label α do
4 for each pair of children x ̸= y and pair of characters c1 ̸= c2 do
5 pairs← append the cartesian product of lists (x, c1) and (y, c2)
6 create the list of left characters for node v by linking the lists of

v’s children.
7 return pairs

Ziv-Lempel decomposition
As the second application, we have chosen the Ziv-Lempel decomposition [19,
20]. This plays an important role in data compression and is widely used. The
following algorithm is based on Gusfield’s [3] with the change that it keeps
matching until no further matches are possible (overlapping cases).

17

3. Suffix Tree

Definition 3.9. Let S be a string of length n. We define substring Priori as
the longest prefix of S[i..n− 1] that also occurs as a substring of S[0..i− 1].

Definition 3.10. Let S be a string of length n. For any position i in S, define
li as the length Priori. For li > 0, define si as the starting position of the
leftmost copy of Priori.

Implementation using the suffix tree can compute li and si in O(n) time.
Before the compression, the algorithm builds a suffix tree T for S and assign to
each node v the number cv. The number represents the smallest suffix number
of any leaf in v’s subtree and it gives the starting position of the leftmost copy
of the substring that labels the path from the root to v. Suffix tree can be
built in O(n) time, and computing the numbers can be obtained in O(n) by
bottom-up propagation.

Algorithm 3.4.2: Compute the s and l array
Input : suffix tree T with assigned c numbers
Output: array s and l

1 for i in 0..n− 1 do
2 p← current point
3 v ← first node at or below p
4 while string_depth(p) + cv ≤ i or no further matches are

possible do
5 traverse the unique path in T that matches a prefix of

S[i..n− 1]
6 li ← string_depth(p)
7 si ← cv

8 return s, l

When the algorithm needs to compute (si, li) for position i, it traverses
the unique path in T that matches a prefix of S[i..n − 1]. The traver-
sal ends at point p, which isn’t necessarily a node, either when i equals to
string_depth(p)+cv, where v is the first node at or below p or no further
matches are possible.

In either case, the path label to p represents the longest prefix of S[i..n−1]
that also occurs in S[0..i]. Taking advantage of the fixed alphabet, the time
to find (si, li) is O(li).

Exact string matching
First problem, which we are going to be concerned about and is usually solved
by the top-down traversal, is exact string matching. Exact string matching is
being heavily studied due to its applications in various fields. The problem

18

3.4. Applications

states as follows: given a pattern P of length m and a text T of length n, find
all occurences of P in T .

We can categorize the exact string matching into three cases. When the
text and pattern is known to the algorithm at the same time, then the suffix
tree achieves the same time complexity O(n + m) as the Knuth-Morris-Pratt
or Boyer-Moore algorithms. However, the case when the text T is known first
and kept for a long time, and then comes a long input sequence of pattern is
much more often. Using a suffix tree for T , all occurrences can be found in
O(m + k) time, where k is the number of occurrences of P in T . The prime
motivation for developing suffix trees was that any pattern (unknown at the
preprocessing phase) can be found in time proportional to its length, after
initial linear preprocessing T . In contrast, the mentioned methods such as
Knuth-Morris-Pratt or Booyer-Moore, require O(m) for processing, and O(n)
for the search.

The third case, where the pattern is first fixed and being preprocessed
before the text is known, is the classic situation handled by the mentioned
methods earlier. This case will be discussed in the next section along with the
topic of traversing with the suffix links.

For the top-down traversal, we’ll have a look at the second case and present
some algorithms. The first exact string matching problem is very straight-
forward. It matches the characters of P along the path label in T until either
P is exhausted or no matches are possible. The former condition can be seen in
Algorithm 3.4.3. If no matches are possible, then P doesn’t appear anywhere
in T .

Algorithm 3.4.3: Exact string matching
Input : suffix tree T of string S and pattern P
Output: array of occurrences

1 exact_matching(pos, node):
2 do
3 match the path label of the current node with the P.
4 until either the pattern ends or the path label ends;
5 if P is not exhausted then
6 pos ← the position of the P where it stopped matching
7 node ← next node starting with the next symbol of pattern P
8 exact_matching(pos, node)
9 else

10 traverse_leaves(node) ▹ traverse and store the leaves

The key point to understand why it works, is to see that P starting at
position j occurs in T if and only if P occurs as a prefix of T [j..n − 1]. This
happens if and only if the pattern P labels an initial part of the path label
from the root to leaf j. This is then being followed by the matching algorithm.

19

3. Suffix Tree

Recall that no two edges out of a node can start with the same character,
therefore it is guaranteed that the matching path is unique. Assuming a finite
alphabet, the work at each node takes constant time and the total time is
proportional to the length of P, making it O(m).

To collect all the occurrences of P , traverse the subtree at the end of the
matching path, and store all the leaves encountered. This can be done in
any linear-time traversal, thus making it O(m + k), where k is the number of
occurrences, i.e. leaves.

Finding all shortest unique substrings
As the second application of the top-down traversal, we will briefly describe
how to find all the shortest unique substrings. The problem is relevant when
designing primers for DNA sequences [1].

A substring of S is called unique if it occurs only once in S. To find all the
unique shortest substrings we traverse the tree in the top-down manner. Let n
be the internal node just before the leaves. When we reach any internal node
n, it is guaranteed that the string path is unique, because no two edges out
of an internal node can have the same following characters. Hence, the string
path of the node n plus the following character forms a unique substring. Note
that, the substrings ending with the sentinel character are not considered as
unique substrings, since the sentinel character is not part of the string.

Algorithm 3.4.4: Find all the shortest unique substrings
Input : suffix tree T of string S
Output: set M of shortest unique substrings

1 traverse(depth, node):
2 if node is leaf and next character ̸= | then
3 if depth+1 < len then
4 M ← {⟨depth + 1, leaf_index⟩}
5 len ← depth+1
6 else if depth+1 = len then
7 M ←M ∪ {⟨depth + 1, leaf_index⟩}
8 else
9 if depth > len then return

10 depth ← string_depth(node)
11 for child in node.children do
12 traverse(depth, child)

To find all the shortest unique substrings, we keep a set M and the length of
shortest unique substrings, and whenever an internal node is being processed,
it checks if the string-depth is less than or equal to the currently shortest

20

3.4. Applications

unique substrings. If it is equal, then we insert the substring into the set.
If it is less, we clear the set M , set the new shortest length and insert the
substring. Because there are O(n) internal nodes, the algorithm runs overall
in the O(n) time.

Computing matching statistics
As stated in the previous section, there are sometimes situations when pat-
tern(s) will be given first while the text varies which is a reverse role of the
normal usage of suffix trees. Naturally, the question would be, whether it is
possible solve those problems by building a suffix tree for the patterns, not the
text, and still achieve the same time and space bounds as in the Knuth-Morris-
Pratt or Aho-Corasick [21] methods. This was solved in a general algorithm
by Chang and Lawler [22] called matching statistics.

Definition 3.11. Let ms(i) be the length of the longest substring of T starting
at position i that matches a substring somewhere in P . These values are called
the matching statistics.

The ms(i) alone doesn’t indicate the location of any such match in P . For
some applications, it is required to know, the location of at least one such
substring for each i. Therefore, The ms(i) is often modified to contain this
information.

Definition 3.12. Let p(i) be the number specifing a location in P such that
the substring starting at p(i) matches a substring starting at position i of T
with length ms(i).

Matching statistics can be used to reduce the overall size of the suffix
tree needed in solutions to more complex problems than just exact matching.
For example, a problem of longest common substring. This would normally
require to build a generalized suffix tree (a tree representing the suffixes of
multiple strings) for string S1 and S2. Each internal node v would be marked
with an additional symbols denoting the presence of a leaf in the substree of
v representing a suffix from the given string. To find the longest common
substring, find the node with the greatest string-depth marked by the both
symbols. However, this solution uses O(|S1| + |S2|) time and space, and the
solution using a suffix tree of a smaller string while still achieving the same
worst-case space and time bounds would be much more desirable. Clearly,
the longest common substring can be found as the longest matching statistic
ms(i). The position in the longer string would be i and the shorter p(i).

Matching statistics also provide a bridge between exact matching meth-
ods and problems of approximate string matching and are central to a fast
approximate matching method devised for rapid database searching [3].

The suffix links are used to speed up the entire algorithm, similarly to the
way it speeds up the construction of a suffix tree in Ukkonen’s algorithm.

21

3. Suffix Tree

The naive way would be to match from left to right the characters T [i..n− 1],
for every 0 ≤ i < n against the suffix tree by following the unique path label
until no further matches are possible. Certainly, this would not achieve the
linear-time bound.

Suppose the algorithm has just followed a matching path to learn ms(i)
for 0 ≤ i < n. That means, it has located a point b in the suffix tree such
that the path to b matches a prefix of T [i..n− 1], and no further matches are
possible. Now the algorithm proceed to compute m(i + 1).

If b is an internal node v of the suffix tree, then the algorithm can follow
its suffix link to node s(v). Otherwise, it walks up to the node v just above b.
The node v can be either the root or an internal node. If v is root, then the
search for ms(i+1) starts at root. For the latter case, it follows the suffix link
from v to s(v). Let xα is the path label of v, which is a prefix of T [i..n− 1].
It follows that α must be a prefix of T [i + 1..n − 1]. From the properties of
suffix links, the s(v) has path label α, hence the search for ms(i + 1) can start
at node s(v) instead of the root.

Algorithm 3.4.5: Matching statistics
Input : suffix tree of string P of length m and string T of length n
Output: the array ms and p

1 offset ← 0
2 node ← root
3 for i in 0..n-1 do
4 len, pos, v ← compute_ms(node, T[i..n-1], offset)
5 ms(i), p(i)← len, pos
6 offset← len− 1
7 if ms(i) = 0 or ms(i) = 1 and T[i+1] is not in P then
8 ms(i + 1)← 0
9 skip next iteration

10 if v != root then
11 node = s(v)

12 return ms, p

Let β denote the string between node v and point b. Then xαβ is the
longest substring in P matching a substring of T at position i. Thus αβ is
string matching a substring at position i + 1. If s(v) has path label α, there is
guaranteed the path β out of s(v) must exist. From this, we use the skip/count
trick (described in Section 3.3.3) to traverse the nodes, instead of traversing
by matching every character on it.

When it reaches the end of the β path, the algorithm continues to match
single characters from T against the characters in the tree until no further
matches are possible. The ms(i + 1) is then the string-depth of the ending

22

3.4. Applications

position. Depending on the result of the search for ms(i) – either there is a
mismatch or it ends at the leaf – the character comparisons done after reaching
the β path in ms(i + 1) begin either with the same character in T that ended
the search for ms(i) or with the next character.

There is a special case when computing ms(i + 1). If ms(i) is 0 or 1, and
T [i + 1] is not in P , then ms(i + 1) = 0.

Algorithm 3.4.6: Compute matching statistics
1 compute_ms(node, T, offset):
2 skips the offset characters ▹ this corresponds to the β path
3 ◃ match single characters after β path until no further match
4 v ← a node at or above the point where the matching stopped
5 len← the string-depth of the ending position
6 if it stopped on an edge (u,v) then
7 pos← one of the v’s leaf
8 else if it’s not on a leaf then
9 pos← one of the u’s leaf

10 else
11 pos← a leaf where algorithm stopped
12 return len, pos, v

All that remains, is to show the correctness of the algorithm.

Theorem 3.4. Let there be a suffix tree for pattern P of length m and let T
be a string of length n be the text. All the matching statistics can be found
in O(n) time.

Proof. The search for any ms(i + 1) begins by walking up at most one edge
and following the suffix link. This is known to be constant for every i, so this
takes O(n) over the entire algorithm. As for the traversing the β path, this
can be proved similarly to the proof of Ukkonen’s algorithm. Recall that, the
link traversal reduces the current depth by at most one, therefore the time for
traversing the β is bounded by O(n).

It remains to show the comparisons done after applying the skip/count
trick of the β path. When computing the ms(i + 1), it shares at most one
chracter in common with ms(i). It follows that at most O(n) comparisons
are performed in total after the β path. All the work of the algorithm for
computing the matching statistics are bounded by O(n), hence the theorem
is proved.

23

Chapter 4
Enhanced Suffix Array

Suffix arrays are very closely related to the suffix trees. Manber and Myers
[2] introduced suffix arrays as a more space-efficient alternative to suffix trees
in 1990. Since then, the study of algorithms for suffix array construction and
its application in bioinformatics has attracted a lot of attention.

The first direct construction for suffix arrays required O(n log n) time,
thus leaving a huge difference between the time complexity of constructing
the suffix trees. While suffix arrays can be induced from suffix trees, which
would imply linear time construction, it would not achieve the purpose of
saving the space.

Fortunately, this gap is closed by numerous researchers. One of the algo-
rithms to achieve the optimal space and time complexity is the SA-IS algo-
rithm [23] of Nong, Zhang & Chan devised in 2009. It is considered as one of
the fastest known suffix array construction algorithms. The currently fastest
algorithm is DivSufSort which wasn’t documented until Fischer and Kurpicz
[24] gave a concise description of it in 2017.

In this chapter, we will present additional data structures that will assist
in solving the problems that are usually solved by the suffix tree. Specifically,
it will be shown on a few chosen algorithms from each category of the tree
traversals to show that it is possible to replace the suffix tree with ESA. These
to be presented concepts are based on the [1].

Before we begin with the definition of a suffix array, a little reminder
needs to be put in place. As mentioned in the previous chapter, the string S
is terminated with the sentinel character.

Definition 4.1 (Suffix Array). Let S be a string of length n. The suffix
array of S, often denoted as suftab, is an array of integers indicating the
lexicographic order of suffixes of the string S.

Note 3. Assuming that n < 232, the most primitive form of suffix array needs
only 4n bytes.

25

4. Enhanced Suffix Array

4.1 BWT table
The ESA can also contain a bwt table, which contains the Burrows and
Wheeler transformation [25], known primarily in the data compression. It
is denoted as bwttab and is an array of size n. For every i, 0 ≤ 0 < n,
bwttab[i] = S[suftab[i] − 1] if suftab[i] ̸= 0. The table can be constructed
in O(n) time by scanning over the suffix array. One of the usage in the thesis
is in the application to solve the problem of maximal pairs. Instead of storing
the whole text, we can just store the bwttab.

4.2 LCP array
The first data structure to be presented, often used in association with suffix
array, is called LCP array.

Definition 4.2 (LCP array). The LCP array stores the lengths of the longest
common prefixes between two adjacent suffixes. The LCP array is often de-
noted as lcptab.

We define lcptab[0] = 0, and since the last character is unique in the
whole string, the lcptab[n− 1] = 0.

Manber and Myers, along with the suffix array, presented an algorithm for
constructing the LCP array in O(n log n) worst-case time and O(n) expected
time, until Kasai et al. [26] showed that LCP array can be constructed directly
from the suffix array in a linear time. However, assuming every entry of an
array takes 4 bytes, this algorithm needs an additional array called rank array
and it would occupy total 8n bytes, in contrast to the output which would be
only 4n bytes. Thereafter, a lot of improvements were devised, which would
decrease space usage [27] or improve time efficiency [28]. Recently, it was
shown, that it is possible to combine the inducing suffix array algorithms to
produce the LCP, which in return gives a very fast algorithms to produce both
of the needed structures [29, 24].

4.2.1 Lcp-intervals
The first fundamental concept to be presented is the lcp-intervals and their
lcp-intervals tree form.

Definition 4.3 (lcp-interval). An interval [i..j], 0 ≤ i < j < n, is called
lcp-interval of lcp-value ℓ if

1. lcptab[i] < ℓ,
2. lcptab[k] > ℓ for all k where i + 1 ≤ k ≤ j,
3. lcptab[k] = ℓ for at least one k where i + 1 ≤ k ≤ j,
4. lcptab[j + 1] < ℓ.

26

4.2. LCP array

Suffix array and LCP
i sa lcp Ssuftab[i]
0 2 0 aaacatat|
1 3 2 aacatat|
2 0 1 acaaacatat|
3 4 3 acatat|
4 6 1 atat|
5 8 2 at|
6 1 0 caaacatat|
7 5 2 catat|
8 7 0 tat|
9 9 1 t|
10 10 0 |

0-[0..10]

1-[8..9]2-[6..7]1-[0..5]

3-[2..3] 2-[4..5]2-[0..1]

Figure 4.1: An example of lcp-interval tree of string S = acaaacatat|.

The lcp-interval [i..j] of lcp-value ℓ can also be denoted as ℓ-interval or
ℓ-[i..j]. Every index k that holds lcptab[k] = ℓ for i + 1 ≤ k ≤ j, is called
ℓ-index. Such a set of ℓ-indices of an ℓ-[i..j] is denoted ℓIndices(i, j).

If ℓ-[i..j] is such an interval that ω = S[suftab[i]..suftab[i] + ℓ− 1] is the
longest common prefix of suffixes Ssuftab[k] for every i ≤ k ≤ j, then [i..j] is
called ω-interval.

An example can be seen on Figure 4.1. Consider an interval [0..5]. This
interval is 1-interval, because lcptab[0] = 0 < 1, lcptab[k] ≥ 1, for 0 < k ≤ 5
and lcptab[6] = 0 < 1. The ℓIndices(0, 5) = [2, 4], and the interval is a-
interval.

4.2.2 Lcp-interval tree
The second essential concept is a representation of the lcp-intervals. The
lcp-interval tree is only a conceptual scheme, so it is not really built by the
algorithm and it allows us to simulate the traversal very efficiently.

Definition 4.4. We say that an m-interval [l..r] is embedded in an ℓ-interval [i..j]
if it is a sub-interval of [i..j], i.e. i ≤ l < r ≤ j and the lcp-value of the [l..r] is
greater than the lcp-value of [i..j], i.e. m > ℓ. We also say that [i..j] encloses
[l..r] in this case.

If [i..j] encloses [l..r] and there is no another interval embedded in [i..j]
which would also enclose [l..r], then [l..r] is called a child interval of [i..j].
Conversely [i..j] is called parent interval of [l..r].

The idea behind ℓ-intervals is that they correspond to the internal nodes
of the suffix tree. The leaves are being deliberately left in this concept, but
every leaf in the suffix tree can be represented by a singleton interval [l..l].

27

4. Enhanced Suffix Array

Kasai et al. [26] showed that it is possible to simulate every bottom-up
traversal of a suffix tree with just a suffix array and an LCP array.

In order to perform a bottom-up traversal, we keep the nested lcp-intervals
with the help of a stack (operations push, pop and top). The elements on the
stack are the lcp-intervals represented by a tuple ⟨lcp, lb, rb⟩: lcp is the lcp-
value of the interval, lb is its left boundary and rb is its right boundary.

Algorithm 4.2.1: Process lcp-intervals
1 push(⟨0, 0, ⊥⟩)
2 for i in 1..n− 1 do
3 lb ← i− 1
4 while lcptab[i] < top.lcp do
5 top.rb ← i− 1
6 interval ← pop()
7 process(interval)
8 lb ← interval.lb
9 if lcptab[i] > top.lcp then

10 push(⟨lcptab[i], lb, rb⟩)

With the Algorithm 4.2.1, we can generate all the lcp-intervals in bottom-
up manner. But in order to perform a meaningful traversal, the information
from the children of currently processed lcp-intervals needs to be known. The
next theorem shows how the relationship of the lcp-intervals can be deter-
mined from the stack operations and has an important consenquence for the
correctness of the derived algorithm which takes the information of the child
nodes in account.

Theorem 4.1. Let top be the top-most interval on the stack and top−1 be
the one next to it on the stack (top−1 < top.lcp). If lcptab[i] < top.lcp, then
before top will be popped off the stack in the while loop, the following holds:

1. If lcptab[i] ≤ top−1.lcp, then top is the child interval of top−1

2. If top−1.lcp < lcptab[i] < top.lcp, then top is the child interval of the
lcptab[i]-interval that contains i.

Proof. Both cases are very similar. The for-loop of Algorithm 4.2.1 is main-
taining this: if ⟨ℓ1, lb1, rb1⟩, ..., ⟨ℓk, lbk, rbk⟩ are intervals on the stack, where
top = ⟨ℓk, lbk, rbk⟩, then lbi ≤ lbj and ℓi < ℓj for all 1 ≤ i < j ≤ k. From the
stack properties, the ⟨ℓj , lbj , rbj⟩ will be popped before ⟨ℓi, lbi, rbi⟩. It fol-
lows that rbj ≤ rbi, thus the ℓj-interval [lbj ..rbj] is embedded in the ℓi-interval
[lbi..rbi], i.e. top is embedded in top−1.

28

4.2. LCP array

Assume top was not the child of top−1. That would mean, there is such an
lcp-interval top′, that encloses top and is embedded in top−1. This can happen
only if top′ is on the stack above the top−1.

Thus we can extend the lcp-interval by a child information so the element
of the stack would be represented by a quadruple ⟨lcp, lb, rb, childList⟩, where
childList is a list of its child intervals. In case (1), we add top to the child
list of top−1 and top−1 is popped next. Otherwise (case (2)), the while loop
is left without assigning a parent for top. The modified algorithm can be seen
at Algorithm 4.2.2.

Algorithm 4.2.2: Process lcp-intervals with child information
1 lastInterval ← ⊥
2 push(⟨0, 0, ⊥, []⟩)
3 for i in 1..n− 1 do
4 lb ← i− 1
5 while lcptab[i] < top.lcp do
6 top.rb ← i− 1
7 lastInterval ← pop()
8 process(lastInterval)
9 lb ← lastInterval.lb

10 if lcptab[i] ≤ top.lcp // case (1)
11 then
12 top.childList ← [top.childList, lastInterval]
13 lastInterval ← ⊥

14 if lcptab[i] > top.lcp then
15 if lastInterval ̸= ⊥ // case (2)
16 then
17 push(⟨lcptab[i], lb, rb, [lastInterval]⟩)
18 lastInterval ← ⊥
19 else
20 push(⟨lcptab[i], lb, rb, []⟩)

Many problems solved by the suffix tree bottom-up traversal can be solved
by merely specifying the function process called on line 7. This function
accepts the interval with the information about its child intervals. The spec-
ifications of the function are presented in the section 4.5 Applications.

29

4. Enhanced Suffix Array

4.3 Child-table
It would be convenient to determine all child intervals of any ℓ-interval [i..j]
in a constant time. This can be achieved by enhancing the suffix array (along
with the lcp table), with an additional table: the child-table, often denoted
as childtab. Furthermore, this will solve the problems which are usually
solved by the top-down traversal of a suffix tree. Each entry of the child-table
contains three values: up, down and nextℓIndex.

For an ℓ-interval [i..j] with ℓ-indices i1 < i2 < ... < ik, the first ℓ-index can
be obtained from childtab[i].down = i1 or childtab[j + 1].up = i1. The rest
ℓ-indices are defined as childtab[ip].nextℓIndex = ip+1 for all p in 1 ≤ p < k.

Definition 4.5. The entries of childtab are defined as follows (undefined
values are set to ⊥):

childtab[i].up = min

{
q ∈ [0..i− 1]

∣∣∣∣∣ lcptab[q] > lcptab[i],
∀k ∈ [q + 1..i− 1] : lcptab[k] ≥ lcptab[q]

}

childtab[i].down = max

{
q ∈ [i + 1..n− 1]

∣∣∣∣∣ lcptab[q] > lcptab[i],
∀k ∈ [i + 1..q − 1] : lcptab[k] > lcptab[q]

}

childtab[i].nextℓIndex = max

{
q ∈ [i + 1..n− 1]

∣∣∣∣∣ lcptab[q] = lcptab[i],
∀k ∈ [i + 1..q − 1] : lcptab[k] > lcptab[i]

}

Once the ℓ-indices are known, the child intervals can be found according
to the lemma below.

childtab
i sa lcp up down nextℓ. . . Ssuftab[i]
0 2 0 2 6 aaacatat|
1 3 2 aacatat|
2 0 1 1 3 4 acaaacatat|
3 4 3 acatat|
4 6 1 3 5 2 atat|
5 8 2 at|
6 1 0 2 7 8 caaacatat|
7 5 2 catat|
8 7 0 7 9 10 tat|
9 9 1 t|
10 10 0 9 |

Table 4.1: Suffix array of string S = acaaacatat| enhanced with the lcp array
and child-table

30

4.3. Child-table

Lemma 4.1. Assume we have an ℓ-interval [i..j] with ℓ-indices i1 < ... < ik.
Then the child intervals of [i..j] are [i..i1 − 1], [i1..i2 − 1],..., [ik..j].

Proof. Let [l..r] be one of the child interval of [i..j]. It can be either a singleton
interval or an m-interval. If [l..r] is a singleton interval, then it is a child
interval of [i..j]. Suppose the latter case, where [l..r] is an m-interval. Since
[l..r] does not contain an ℓ-index, it means that [l..r] is embedded in [i..j].
Because lcptab[i1] = lcptab[i2] = ... = lcptab[ik] = ℓ, there is no interval
embedded in [i..j] that is enclosing the [l..r]. Hence, [l..r] is a child interval
of [i..j].

The example of the child-table can be seen on the Table 4.1. For in-
stance, the interval 1-[0..5] has 1-indices 2 and 4. The first 1-index is stored
in childtab[0].down and childtab[6].up, the second 1-index is stored in
childtab[2].nextℓIndex. Thus, all the child intervals of the interval 1-[0..5]
are [0..1], [2..3], and [4..5].

4.3.1 Construction
Child-table can be constructed in a bottom-up manner by using the lcp-
interval tree in linear time. The Algorithm 4.3.1 is very similar to the Al-
gorithm 4.2.2. To show the algorithm works corretly, we need the following
lemma.

Algorithm 4.3.1: Construction of up/down and nextℓIndex values
1 lastIndex ← −1
2 push(0)
3 for i in 1..n− 1 do
4 while lcptab[i] < lcptab[top] do
5 lastIndex ← pop()
6 if (lcptab[i] ≤ lcptab[top]) and (lcptab[top] ̸=

lcptab[lastIndex]) then
7 childtab[top].down ← lastIndex

/* now lcptab[i] ≥ lcptab[top] holds */
8 if lcptab[i] = lcptab[top] then
9 childtab[i].nextℓIndex ← i

10 if lastIndex ≥ −1 then
11 childtab[i].up ← lastIndex
12 lastIndex ← −1
13 push(i)

31

4. Enhanced Suffix Array

Lemma 4.2. Let i1, ..., ip be the indices on the stack (where ip is the topmost
element), then i1 < ... < ip and lcptab[i1] ≤ ... ≤ lcptab[ip]. Moreover,
if lcptab[ij] < lcptab[ij + 1], then for all k with ij < k < ij + 1, we have
lcptab[k] > lcptab[ij + 1].

Proof. By induction.
Before the algorithm executes the for-loop for the first time, this lemma

holds. Assume it holds after the for-loop has been executed for m times.
Consider now (m+1)-th execution. Suppose there is an index q with 1 ≤ q < p
such that lcptab[i1] ≤ ... ≤ lcptab[iq] ≤ lcptab[m+1] < lcptab[iq+1] ≤ ... ≤
lcptab[ip]. It follows, that in the while-loop, iq+1, ..., ip are popped from the
stack and afterwards the m + 1 is pushed onto the stack, thus being now the
topmost element. Clearly, the conditions i1 < ... < iq < m + 1 and lcptab[i1]
≤ ... ≤ lcptab[iq] ≤ lcptab[m + 1] hold. Suppose lcptab[ij] < lcptab[ij+1].
By the inductive hypothesis, for ∀j ∈ {1, ..., p} with lcptab[ij] < lcptab[ij+1],
we have lcptab[k] > lcptab[ij+1] for ∀k with ij < k < ij+1. It is not difficult
to see that this is a consequence of the while-loop.

Let’s summarize it with the following theorem and show that the algorithm
correctly fills up the values.

Theorem 4.2. Algorithm 4.3.1 correctly fills the up/down values of the child-
table

Proof. Consider the line 7 (filling the down value) in the Algorithm 4.3.1 is exe-
cuted. Then the following holds: lcptab[i] ≤ lcptab[top] < lcptab[lastIndex]
and top < lastIndex < i. The down field is the maximum of the set M (de-
fined followingly from the definition 4.5). Surely, lastIndex ∈ [top+1..n] and
lcptab[lastIndex] > lcptab[top]. Moreover, according to Lemma 4.2, lastIn-
dex is an element of M . Suppose lastIndex is not the maximum of M . Then
there is an element q′ in M with lastIndex < q′ < i and it follows that
lcptab[lastIndex] > lcptab[q′]. This is a contradiction, because it implies
the lastIndex would be popped from the stack when q′ was being processed.
Hence, lastIndex is the maximum of M .

Now consider the line 11 (filling the up value) is executed. Then lcptab[top]
≤ lcptab[i] < lcptab[lastIndex] and top < lastIndex < i. The up field is the
minimum of the set M ′ (defined followingly from the definition 4.5). Clearly,
the lastIndex ∈ [0..i−1] and lcptab[lastIndex] > lcptab[i]. Moreover, lastIn-
dex ∈ M ′, otherwise it would have been popped from the stack earlier. Now
suppose lastIndex is not the minimum of M ′. Then there is such q′ ∈ M ′

with top < q′ < lastIndex, that lcptab[lastIndex] ≥ lcptab[q′] > lcptab[i] ≥
lcptab[top], hence this is a contradiction.

32

4.4. Suffix link table

4.3.2 Determining child intervals
The first step to locate all the child intervals of ℓ-interval [i..j] is to find the
first ℓ-index. The first ℓ-index is either in the up or down field of the child-
table. This will be more clear with the following lemma.

Lemma 4.3. For every ℓ-interval [i..j] the following statements hold:

(1) i < childtab[j + 1].up ≤ j or i < childtab[j + 1].up ≤ j.

(2) childtab[j + 1].up is the first ℓ-index if i < childtab[j + 1].up ≤ j.

(3) childtab[i].down is the first ℓ-index if i < childtab[i].down ≤ j

Proof. (1) Suppose lcptab[j + 1] = ℓ′ (ℓ > ℓ′) and let I ′ be the corresponding
ℓ′-interval. If [i..j] is a child interval I ′, then lcptab[i] = ℓ′ and because there
is no ℓ-index in [i+1..j], it follows that childtab[j +1].up = minℓIndices(i, j).
Therefore i < childtab[j +1].up ≤ j. Otherwise, if [i..j] is not a child interval
of I ′, then suppose the lcptab[i] = ℓ′′ and let I ′′ be the corresponding ℓ′′-
interval. Surely, ℓ > ℓ′′ > ℓ′ = lcptab[j + 1], which means that [i..j] is a
child interval of I ′′. Hence, childtab[i].down = minℓIndices(i, j), hence i <
childtab[i].down ≤ j.

(2) It follows from:

childtab[j + 1].up = min

{
q ∈ [i + 1..j]

∣∣∣∣∣ lcptab[q] > lcptab[j + 1],
∀k ∈ [q + 1..j] : lcptab[k] ≥ lcptab[q]

}
= min {q ∈ [i + 1..j] | ∀k ∈ [q + 1..j] : lcptab[k] ≥ lcptab[q]}
= minℓIndices(i, j)

(3) Let i1 be the first ℓ-index of interval [i..j]. Then lcptab[i1] = ℓ >
lcptab[i] and for ∀k ∈ [i + 1..i1 − 1]: lcptab[k] > lcptab[i1]. Furthermore,
∀q ∈ [i+1..j]: lcptab[q] ≥ ℓ > lcptab[i] but not lcptab[i1] > lcptab[q].

Once the first ℓ-index of an ℓ-interval [i..j] is found, the rest can be obtained
from the field nextℓIndex of every other ℓ-index. See the Algorithm 4.3.2.
The algorithm runs in constant time O(|Σ|), where |Σ| is the number of child
intervals of the ℓ-interval currently being processed. With the algorithm, it
is possible to simulate any top-down traversal of a suffix tree with the ESA.
Thanks to the Lemma 4.3, it is also very simple to implement a function to
return the lcp-value of an lcp-interval [i..j] in constant time.

4.4 Suffix link table
In this section, we focus on the suffix link from the suffix tree and add the
similar concept into the ESA. We start with some basic definitions and lemmas
established from [1]. We denote inverse suffix array as suftab−1 such that
suftab−1[suftab[q]] = q for every 0 ≤ q < n.

33

4. Enhanced Suffix Array

Algorithm 4.3.2: Get child intervals of an ℓ-interval
1 intervalList ← []
2 if i = 0 and j = n-1 // for the ℓ-interval [0..n− 1]
3 then
4 while childtab[i1].nextℓIndex ̸= ⊥ do
5 i2 ← childtab[i1].nextℓIndex
6 intervalList ← [intervalList, (i1, i2 − 1)]
7 i1 ← i2

8 intervalList ← [intervalList, (i1, n− 1)]
9 else

10 i1 ← getFirstℓIndex(i, j)
11 intervalList ← [intervalList, (i, i1 − 1)]
12 while childtab[i1].nextℓIndex ̸= ⊥ do
13 i2 ← childtab[i1].nextℓIndex
14 intervalList ← [intervalList, (i1, i2 − 1)]
15 i1 ← i2

16 intervalList ← [intervalList, (i1, j)]
17 return intervalList

Definition 4.6. Let Ssuftab[i] =aω. If j, 0 ≤ j < n, satisfies Ssuftab[i] = ω,
then we denote j by link[i] and call it the suffix link (index) of i.

Lemma 4.4. If suftab[i] < n, then link[i] = suftab−1[suftab[i]+1].

Proof. Let Ssuftab[i] =aω. Since Ssuftab[i]+1 = ω, link[i] must satisfy
suftab[link[i]] = suftab[i] +1.

Definition 4.7 (Suffix link interval). Given ℓ-interval [i..j], the smallest lcp-
interval [l..r] satisfying l ≤ link[i] < link[j] ≤ r is called the suffix link
interval of [i..j].

Lemma 4.5. Given the aω-interval ℓ-[i..j], its suffix link interval is the ω-
interval, which has lcp-value ℓ− 1.

Proof. Consider an lcp-interval [i..j] and let [l..r] be its suffix link interval.
Because the lcp-interval [i..j] is the aω-interval, aω is the longest common
prefix of the suffixes in the interval [i..j]. It follows, that ω is the longest
common prefix of the suffixes in the interval [l..r], because [l..r] is the smallest
lcp-interval that l ≤ link[i] < link[j] ≤ r. Thus, [l..r] is the ω-interval and
its lcp-value is ℓ− 1.

34

4.4. Suffix link table

childtab suflink
i sa lcp up down nextℓ. . . l r sa-1 Ssuftab[i]
0 2 0 2 6 2 aaacatat|
1 3 2 0 5 6 aacatat|
2 0 1 1 3 4 0 10 0 acaaacatat|
3 4 3 6 7 1 acatat|
4 6 1 3 5 2 3 atat|
5 8 2 8 7 at|
6 1 0 2 7 8 4 caaacatat|
7 5 2 0 5 8 catat|
8 7 0 7 9 10 5 tat|
9 9 1 0 10 9 t|
10 10 0 9 10 |

Table 4.2: ESA of string S = acaaacatat| with additional suflink table

4.4.1 Construction
In order to integrate the suffix links, we compute the suffix link interval [l..r]
for every ℓ-interval [i..j] and store the right boundaries l and r at the first ℓ-
index of [i..j]. Such a table of these values is denoted suflink. The example
of the suflink can be seen on the Table 4.2.

To compute the table, the lcp-interval tree is traversed in breadth first
left-to-right manner. For every lcp-value, we create a list of intervals having
such lcp-value, so whenever an ℓ-interval is computed, it is added to the list
corresponding with its lcp-value. This list is called ℓ-list and is automatically
sorted by the left-boundary of the intervals in ascending order. Taking the
example from Figure 4.1, we have:

0− list : [0..10]
1− list : [0..5], [8..9]
2− list : [0..1], [4..5], [6..7]
3− list : [2..3]

For every lcp-value ℓ > 0 and every ℓ-interval [i..j] in ℓ-list, compute the
link[i] according to the Lemma 4.4 and then search in the (ℓ− 1)-list for the
interval [l..r] such that l is the biggest left boundary of all (ℓ − 1)-intervals
with l ≤ link[i]. As the total number of intervals in the ℓ-list is at most n,
the search can done in O(log n) time by using the binary search. The search is
done for every ℓ-interval (at most n), therefore the whole process would take
O(n log n) time. The table along with the inverse suffix array require O(n)
space and can be deleted after the preprocessing phase. This is however very
slow and lose the optimal time complexity to construct the ESA.

35

4. Enhanced Suffix Array

Fortunately, the construction can be done in a linear time. We reduce the
problem of constructing the suffix link intervals to the problem of answering
range minimum queries (RMQ). But, in contrast to the previous method, we
store the boundaries of an ℓ-interval [i..j] at every ℓ-index. With the following
lemma, it will be clear that it is possible to compute the suffix link interval
[l..r] of an ℓ-interval [i..j] in constant time.

Lemma 4.6. Let [i..j] be an ℓ-interval and let [l..r] be its suffix link interval.
Since there is an ℓ-index q, i + 1 ≤ q ≤ j, there is also an index k such that k
is (ℓ− 1)-index of [l..r] and link[i] + 1 ≤ k ≤ link[j].

Proof. Follows from the proof of Lemma 4.5.

Since l ≤ link[i] + 1 ≤ link[j] ≤ r and lcp-value of link[i] and link[j] is
ℓ− 1, the minimum value of the lcp-table in the range [link[i]+1..link[j]] is
ℓ− 1. Therefore, we can locate an (ℓ− 1)-index k of [l..r] by answering RMQ
in the range [link[i]+1..link[j]].

Definition 4.8 (Range Minimum Query). Let L be an integer array of size n.
Given two positions 0 ≤ i < j < n, the problem of range minimum query
RMQ(i, j) is to find the position k of an element such that i ≤ k ≤ j and L[k]
= min{L[q] | i ≤ q ≤ j }.

An RMQ can be answered in constant time provided that the array L is
properly preprocessed. For the computation of the suffix link intervals, the L
array for the RMQ problem is set to be the lcptab. We begin the process
by storing the boundaries of every ℓ-interval [i..j] at every ℓ-index of the ℓ-
interval. Afterwards, we traverse the lcp-interval tree in breadth-first order in
the left-to-right manner. Suppose the ℓ-interval [i..j] is being processed. First,
we compute link[i] and link[j] according to Lemma 4.4 and then evaluate
k = RMQ(link[i]+1, link[j]), which is an (ℓ−1)-index of the suffix link interval
of [i..j]. Let l and r be the boundaries of the suffix link interval at index k.
Finally, we store the l and r in the suffix link table at the first ℓ-index of [i..j].
Every step in the procedure takes constant time and space, thus the overall
complexity of computing the suffix link intervals is O(n).

4.5 Applications

In this section, we will look into the problems that were presented in the
Chapter 3 Suffix Tree and solve them using the ESA framework by simulating
the suffix tree traversals.

36

4.5. Applications

4.5.1 Bottom-up traversals
Finding maximal repeated pairs

The implementation using the ESA considerably reduces the space require-
ments and in consenquence, much larger genomes can be searched for repet-
itive elements. The algorithm requires tables suftab, lcptab and btwtab.
The access to the three tables are in sequential order, which is verified to
reduce the running time [1].

We begin by introducing some notions: The undefined character is denoted
by ⊥ and we assume that it is different from all characters in Σ. Let [i..j]
be an ℓ-interval and u their longest common prefix. Next we define P[i..j] =
{ suftab[r] | i ≤ r ≤ j }, i.e. the set of all positions p such that u is a prefix
of Sp. This set is divided into disjoint and possibly empty sets according to
the left character of each position: For any a ∈ Σ ∪ {⊥} define

P[i..j](a) =
{
{ 0 | 0 ∈ P[i..j] } , if a = ⊥
{ p | p ∈ P[i..j], p > 0, and S[p− 1] = a } , otherwise.

The algorithm processes lcp-interval and computes the position sets in the
bottom-up manner. Note that, if the function process (Algorithm 4.2.2) is
called for an lcp-interval, then all its child intervals are available. On top of
that, besides the child intervals, the stack is also maintaining the position sets
which forms the fifth component to the quadruples. Suppose the algorithm is
processing [i..j].

If [i..j] is a singleton interval, then let p = suftab[i], P[i..j] = { p } and

P[i..j](a) =
{
{p}, if p > 0 and S[p− 1] = a or p = 0 and a = ⊥,

∅ otherwise.

Now suppose i < j. For each character a ∈ Σ ∪ {⊥}, P[i..j](a) is computed
step by step while processing the child intervals of [i..j] in the left-to-right
manner. By Pq

[i..j](a) we denote the subset of P[i..j](a) obtained after process-
ing the q-th child interval of [i..j]. Let [l..r] be the (q + 1)-th child interval
of [i..j]. Due to the bottom-up manner, this interval has been processed and
thus the P[l..r](b) are available for any character b ∈ Σ ∪ {⊥}. Suppose the
interval [l..r] is being processed.

First, we compute the cartesian product by combining the set Pq
[i..j](a), a ∈

Σ∪{⊥}, with the set P[l..r](b), b ∈ Σ∪{⊥} which creates a maximal repeated
pair ((p, p+ℓ−1), (p′, p′ +ℓ−1)), p < p′ for all p ∈ Pq

[i..j](a) and p′ ∈ P[l..r](b),
a, b ∈ Σ∪{⊥} and a ̸= b. Because u is the longest common prefix of [i..j], the
pair is clearly a repeated pair. By construction, it combines only the positions
which have different left character. This guarantees the left-maximality of the
output. As the right maximality, this is guaranteed because the position sets

37

4. Enhanced Suffix Array

Pq
[i..j](a) were inherited from child intervals of [i..j] which are different from

[l..r]. Hence the characters to the right of u are different.
Finally, we compute the union of Pq+1

[i..j](c) = Pq
[i..j](c) ∪ P[l..r](c) so the

interval [i..j] can inherit the position sets from interval [l..r].
These two steps together runs in O(|Σ|n + z). Each product of position

sets is computed in a constant time making it O(z), where z is the number
of repeats. As for the union operation of the position sets, we implement it
with a linked list so it can be achieved in a constant time. That means, for
each lcp-interval, we have O(|Σ|) union operations, and since there are O(n)
intervals, it requires O(|Σ|n).

As far as the space consumption is concerned, if the child intervals of
[i..j] have been processed, its position sets are redundant. We store only the
position sets of lcp-intervals that are maintained on the stack to be processed
in the bottom-up traversal of the lcp-interval tree. Hence, the space required
is bounded by the maximal size of the stack, so the total space requirements
is O(|Σ|n). However, in practice, the stack size is much smaller [1].

Ziv-Lempel decomposition

Ziv-Lempel decomposition can be solved by the bottom-up traversal of the lcp-
interval tree. We add another integer value min to the quadruples stored on
the stack. Suppose the process function is being applied to ℓ-interval [i..j]. Let
[l1..r1], [l2..r2],...,[lk..rk] be the k child intervals of [i..j] stored in the childList.
Let min1,...,mink be the min-values of the child intervals. Let

M = {min1, ..., mink } ∪ { suftab[q] | q ∈ [i..j] and q /∈ [lp..rp] for all 1 ≤ p ≤ k } .

Set the min := minM and assign sq := min and lq := ℓ to all q ∈ M that
q ̸= min. As for the root interval [0..n − 1], we assign sq := 0 and lq := 0 to
all q ∈M .

4.5.2 Top-down traversals
In this section, we are concerned with the problems that are solved by the
top-down traversal of the suffix tree. One of the problem is to answer queries
of ”Is P a substring of S?” in optimal O(m) time. As for the enumeration
queries, the algorithm can answer those in optimal O(m + z).

Exact string matching

It is convenient for the following algorithm to be able to get the child interval
[l..r] of ℓ-interval [i..j] whose suffixes have the character a ∈ Σ at position
ℓ. If the interval does not exist, it returns ⊥. Let the function be called
getInterval.

38

4.5. Applications

Algorithm 4.5.1: Exact string matching with ESA

1 c ← 0
2 queryFound ← True
3 (i, j)← getInterval(0, n, P [c])
4 while (i, j) ̸= ⊥ and c < m and queryFound = True do
5 idx ← suftab[i]
6 if i ̸= j then
7 ℓ← getLcp(i, j)
8 min ← min{ℓ, m}
9 queryFound ← S[idx + c..idx + min− 1] = P [c..min− 1]

10 c← min
11 (i, j)← getInterval(i, j, P [c])
12 else
13 queryFound ← S[idx + c..idx + m− 1] = P [c..m− 1]

14 if queryFound then Report(i, j)
15 else print(”Pattern not found”)

First, the Algorithm 4.5.1 finds the singleton or lcp-interval [i..j] whose
suffixes start with the character P [0] on the line 3. Suppose the interval is sin-
gleton. Then the pattern P occurs in S if and only if S[suftab[i]..suftab[i]+
m− 1] = P .

If [i..j] is an lcp-interval, then we determine its lcp-value ℓ. Let ω =
S[suftab[i]..suftab[i] + ℓ − 1] be the longest common prefix of the suffixes
Ssuftab[k] for all k in i ≤ k ≤ j. If m ≤ ℓ, then pattern P occurs in S if and
only if ω[0..m − 1] is equal to the pattern P . Otherwise, if ℓ < m, then we
check ω = P [0..ℓ−1]. If the substrings are not equal, then the pattern P does
not occur in S. If it is equal, then we search with getInterval(i, j, P [ℓ]) for
the ℓ′- or singleton interval [i′..j′] whose suffixes start with the prefix P [0..ℓ].
Note that, the suffixes of [i′..j′] surely have P [0..ℓ − 1] as a common prefix
because [i′..j′] is embedded in [i..j]. Then we continue in the same manner
but with a slight change – we shift the matching by ℓ positions, which is
represented by the variable c in the Algorithm 4.5.1.

As for the enumerative queries, all it takes is to list every position by
enumerating the interval [i..j] in which the pattern S occurs. The preceding
algorithm takes O(m) time, and because P occurs z times in S, then listing
every position of every occurence takes additional O(z) time.

Finding all shortest unique substrings

As for the shortest unique substrings problem, if u is a shortest unique sub-
string, then there is an ℓ-interval [i..j] and singleton child interval [k..k] such

39

4. Enhanced Suffix Array

that u is a prefix of length ℓ + 1 of Ssuftab[k] and u[ℓ] ̸= |. We also maintain a
set M of unique substrings, represented by their length and their start position
in S. Additionally, the value q which is the length of the unique substrings in
M detected so far. Initially, the q is set to ∞.

Algorithm 4.5.2: Find all the shortest unique substrings
Output: the set M of shortest unique substrings

1 queue.push(⟨0, n− 1⟩)
2 while !queue.empty() do
3 (i, j)← queue.pop()
4 ℓ← getLcp(i, j)
5 for every (l, r) of getChildIntervals(i, j) do
6 if (l, r) is singleton then
7 if ℓ + 1 < q then
8 M ← {⟨ℓ + 1, suftab[l]⟩}
9 q ← ℓ + 1

10 else if ℓ + 1 = q then M ←M⊥{⟨ℓ + 1, suftab[l]⟩} ;
11 else if getLcp(l, r) +1 ≤ q then queue.push(⟨l, r⟩) ;

Let [i..j] be the current ℓ-interval being processed. We compute the child
intervals with the function getChildIntervals. The child interval of [i..j]
can be either a singleton interval [k..k] with Ssuftab[k][ℓ] ̸= |, or ℓ′-interval
[l..r]. If the interval is an ℓ′-interval, then we add it to the back of the queue,
provided the ℓ′ + 1 ≤ q. Now suppose the interval is singleton, then the prefix
of Ssuftab[k] of length ℓ + 1 is a unique substring of S. If the length ℓ + 1 is
less than q, then M is updated by {⟨ℓ + 1, suftab[k]⟩} and q is assigned with
ℓ+1. If M is not empty and q is equal to ℓ+1, then we add ⟨ℓ+1, suftab[k]⟩
to M . The algorithm continues to process the lcp-interval at the front of the
queue, until the queue is not empty.

The time to process and verify the uniqueness of the substrings takes
proportional time to the number of processed lcp-intervals. Thus the algorithm
runs in O(n) time. However, in practice only a small number of lcp-intervals
is processed, which can be seen in the Chapter 7 Experimental results.

4.5.3 Traversal with suffix links
The last algorithm to be presented will solve the matching statistics by adapt-
ing the mechanism to the enhanced suffix array utilizing the suffix link table.

Computing matching statistics

The resulting algorithm is called greedymatch [1], which determines the match-
ing statistics in O(n + m) time. Given the ESA for S, a location in the ESA

40

4.5. Applications

is a tuple ([i..j], q, [l..r]) where [i..j] is an ℓ-interval, and either q = ℓ and
[i..j] = [l..r] or the following condition holds: [l..r] is a child interval of [i..j]
and either [l..r] is an m-interval and ℓ < q < m or [l..r] is a singleton in-
terval and ℓ < q ≤ n − suftab[l]. Each location in the ESA corresponds to
S[suftab[l]..suftab[l] + q − 1].

To compute the ms(k), greedymatch is applied to each suffix T [k..m− 1]
and in each step it finds an ESA location ([i..j], q, [l..r]) that corresponds to
the longest prefix of T [k..m− 1] occuring as a substring of S. Then we assign
lj := q and pj := suftab[z] for some z ∈ [l..r], and set the offset := q-1. If
the algorithm starts at the full length of the T , i.e. j = 0, or the length of
longest matching prefix is zero, i.e. lj = 0, then we start at location ([0..n−1],
q, [0..n − 1]). Otherwise, we look up the suffix link interval [i′..j′] of [i..j] in
the suflink[minℓIndices(i, j)]. If q = ℓ and [i..j] = [l..r], then it matched
the whole suffix and therefore the next suffix, i.e. T [k + 1..m − 1] can be
proceed with [i′..j′] with the length q = ℓ − 1. Otherwise, the S[suftab[l] +
ℓ..suftab[l] + q − 1] has to be rescanned from location [i′..j′].

It is very similar to the Algorithm 4.5.1 with a few modifications:

• it matches a character by character until no further matching is possible,
• it starts matching at any location and delivers a location as a result.

With these modification, greedymatch can be achieved in constant time
per visited lcp-interval. Therefore, we obtain an algorithm that computes the
matching statistics in O(n + m) time.

41

Chapter 5
Implementation

In this chapter, we are going to present the implementation details and choises
made to construct the enhanced suffix array structure. All the structures were
written in C++.

The implementation is dependent on the custom aliases for the data types.
The most common which will be seen through the text is (1) uval_t – simply
an unsigned int, (2) uval_t2 – a pair of uval_t, (3) uval_t3 – a tuple of
uval_t, (4) V_NUM – a std::vector<uval_t>.

We consider in our implementation the alphabet of size ≤ 255. Hence
every character takes only 1 byte.

5.1 Suffix Tree
For the construction of suffix tree, we used the Ukkonen’s algorithm described
in 3.3. Each node needs at least 20 bytes, consisting of start, end, index
(for the leaves), the suffix link pointer, and additionally the pointers to the
children. The whole suffix tree also keeps a whole string and a pointer to the
root.

All the implementations concerning the suffix tree are located in the names-
pace suftree. As for the inner support functions, the anonymous namespaces
approach for the access only within the file was chosen. The current available
algorithms:

suftree::maximalPairs – computation of the maximal repeated pairs
suftree::zivLempel – computation of ziv-lempel decomposition
suftree::matchingStatistics – given T , compute the ms(i) of T [i..n]
suftree::getAllOccurrences –find all occurrences of P in S

suftree::isSubstring – decide if pattern P is a substring of string S

suftree::getUniqueSubstrings – given S, output all the unique substrings

43

5. Implementation

As for the construction of the suffix tree, simply call suftree::SuffixTree
tree(str), where str is an input string terminated with the sentinel charac-
ter |.

5.2 Enhanced Suffix Array
We start by presenting the two approaches to construct the basic blocks
suftab and lcptab.

5.2.1 Suffix Array
For the suffix array construction, we have chosen the space efficient linear suffix
array construction by almost pure induced-sorting. It is easy to implement
and it is considered as one of the fastest algorithm [23]. Also it is possible to
incorporate the LCP array as a by-product of the SA-IS inducing algorithm,
which is easier than inducing it by the divSufSort [24]. We start by giving
some basic notions. The following presentation is based on [23, 30].

Definition 5.1 (L/S-type suffix). Let S be a string terminated with a sentinel
character. A suffix S[i..n−1] is S-type if S[i..n−1] < S[i+1..n−1]. Otherwise,
if S[i..n− 1] > S[i + 1..n− 1], then it is a L-type.

Lemma 5.1. All the suffixes of S can be classified as S-type or L-type in O(n)
time.

Definition 5.2. A character S[i] is called leftmost S-type (LMS) if S[i], 0 <
i < n is S-type and S[i − 1] is L-type. A suffix S[i..n − 1] is denoted as
LMS-suffix.

Definition 5.3 (LMS-substring). A LMS-substring is either a substring S[i..j]
with both S[i] and S[j] being LMS characters and there is no other LMS char-
acter in between or the sentinel itself.

In suftab, all suffixes starting with the same character span consecutively
into an sub-array called c-bucket. Further, in the same bucket, the L-type
suffixes precede the S-type suffixes (due to their definition). Hence, each
bucket can be sub-divided into S/L-type buckets.

Now the induced sorting algorithm is described as follows. These steps are
done in linear time.

1. Sort the LMS-suffixes and put them in their corresponding S-type buck-
ets in suftab with their relative orders unchanged.

2. Induce the order of the L-type suffixes by scanning suftab in left-to-
right manner. For every i in suftab, if Ssuftab[i]−1 is L-type, then
write suftab[i]−1 to the current head of the L-type c-bucket, where
c = S[suftab[i]− 1], and forward the current head to the right by one.

44

5.2. Enhanced Suffix Array

3. Induced the order of the S-type suffixes by scanning suftab in right-
to-left manner. For every i in suftab, if Ssuftab[i]−1 is L-type, then
write suftab[i]−1 ti the current end of the S-type c-bucket, where c =
S[suftab[i]− 1], and forward the current head to the left by one.

The main idea is to treat the LMS-substrings as the basic blocks of the
string and efficiently sort them, so we can replace the LMS-substrings with
their order index, also called a name. As a result, the S can be represented
by a shorter string, denoted by S′.

To determine the order of any two LMS-substrings, we compare the char-
acters from left to right. First, by the lexicographical values, and if the char-
acters are equal, then next we compare their types, where S-type has a higher
priority than L-type.

The naming of LMS-substrings process is similar to the inducing the LMS-
suffixes in the algorithm above, with the difference of putting in the unsorted
LMS-suffixes into their corresponding buckets. Then we assign names to the
LMS-substrings by comparing adjacent LMS-suffixes with the index of their
bucket. So, the S′ is created by joining the names of the LMS-substrings in
their original positional order. This takes overall linear time.

We build a suffix array suftab′ of S′ by applying the inducing algorithm
recursively to S′, if the size of buckets are less than the length of the S′. The
important property [23] to observe is that the order of the suffixes in S′ is
the same as the order of the respective LMS-suffixes in S. Hence, suftab′

determines the sorting of the LMS-suffixes in S. Furthermore, at most every
second suffix in S can be LMS, the complete algorithm has worst-case T (n) =
T (n

2) + O(n) = O(n). As for the space complexity, it is designated by the
space needed to store the suftab for every reduced sub-problem. Initially,
the first iteration is bounded by n⌈ log n⌉ bits, and decreases at least a half
for every next iteration, hence the overall space complexity is O(n log n).

5.2.2 LCP Array
For the LCP array, as suggested before, we have chosen the Fischer’s [29]
enhancement of SA-IS to additionally induce the LCP array as a by-product.
It was shown that it outperforms most of the LCP array construction and in
combination with the SA-IS it is very powerful.

Whenever we place two S- or L- suffixes Si−1 and Sj−1 at k−1 and k in the
final suftab (steps 3 and 4 in the SA-IS inducing algorithm), their lcp-value
can be induced from the lcp-value of Si and Sj . As these suffixes are the one
that caused the inducing of Si−1 and Sj−1, their lcp-value ℓ is already known
and thus we can set lcptab[k] = ℓ + 1.

The augmented steps of the induced sorting algorithm:

1. Compute lcp-values of the LMS-suffixes and whenever we place an LMS-
suffix, we also store its lcp-value at the corresponding position in lcptab.

45

5. Implementation

2. Suppose that the inducing step just put suffix Ssuftab[i]−1 into its L-type
c-bucket at some position k. If it was the first suffix in its bucket, then
its lcp-value is 0. Otherwise, suppose that in the previous iteration j < i
the inducing step placed suffix Ssuftab[j]−1 at k−1 in the same c-bucket.
If j and i are not in the same bucket, both the suffixes start with the
different character, therefore the lcptab[k] is set to 1 (Ssuftab[j]−1 and
Ssuftab[i]−1 share only a common c at the beginning). Otherwise if j and
i are in the same c′-bucket, the lcp-value of the suffixes Ssuftab[j]−1 and
Ssuftab[i]−1 is given by the minimum in the range [j + 1..i] of lcptab.
Let this value be ℓ, then the lcptab[k]= ℓ + 1.

3. This step is very similar to the previous one. Suppose that in the pre-
vious iteration j > i, the inducing step put suffix Ssuftab[j]−1 at k + 1
in the same c-bucket. If k is the last position in its S-bucket, we skip
the following step. Otherwise, if j and i are not in the same buckets,
we set lcptab[k + 1] to 1. If j and i are in the same c′-bucket, then the
lcp-value is given by the minimum in the range [i + 1..j]. Hence we set
lcptab[k + 1] = ℓ + 1

Note 4. When reaching the last L-suffix and the first S-suffix in the augmented
step 3, it has to recompute the lcp-values between the first LMS-suffix in the
c-bucket (if it exists) and the last L-suffix in the same bucket. Likewise for
the step 4, when placing the first S-suffix in its c-bucket, it has to recompute
lcp-values between this induced S-suffix and the largest L-suffix in the same
c-bucket. However, this was shown in [29], that a naive computation of these
cases is sufficient to achieve the linera running time.

When computing the suftab′ for S′. The lcp-values refers to the characters
in the reduced alphabet which corresponds to LMS-substrings Ri in S. Hence
we need to scale every lcp-value in lcptab′. Here with the knowledge of
suffixes being lexicographically ordered in S′, during the scaling lcptab′[k],
we know that the first m = min(lcptab[k − 1], lcptab[k]) LMS-substrings
match, hence we can compute the real lcp-value as

lcptab[k]−1∑
i=0

|Rsuftab[k]+i| =
m−1∑
i=0
|Rsuftab[k]+i|︸ ︷︷ ︸

already computed

+
m−1∑
i=m

|Rsuftab[k]+i|

To remove the computation of lcp-values recursively, we used the sparse
variant of the Φ-algorithm [31] at the first level of the recursion to compute
the lcp-values of the LMS-suffixes in overall linear time.

As for the finding minima in the augmented steps 3 and 4 above, we have
chosen the following solution. We keep an array M of the size |Σ|, where M [c]
is the minimum of lcp-value in bucket c. To keep M up-to-date, after every
step we set M [c] to lcptab[i], and then update all other elements in M that
are larger than lcptab[i] by lcptab[i]. This approach runs in O(nσ) time.

46

5.2. Enhanced Suffix Array

The construction algorithm is done only in the first level and operates
just over the lcptab plus the MinStack which is bounded by the size of the
alphabet.

The algorithms were chosen based on the Kurpicz’s solution [32] and from
the experiments [29], it yields the better overall run-time than most existing
solutions.

Both the implementation of the SAIS and induced LCP based on this
algorithm can be found in /esa/utils/sais{.hpp/.cpp}.

Space reduction of LCP array

The lcptab requires 4n bytes in the worst case. However, in practive there
usually only few entries that are larger than or equal to 255 and there is a
trick how to further optimalize it described from [1]. With this, the lcptab
can be implemented in little more than n bytes. For the lcp-values ≥ 255,
we store them in the special table called llvtab. This table consists of pairs
(i, lcptab[i]) ordered by the i. If lcptab[i] = 255, then we find the correct
value in the table llvtab by performing a binary search using i as the key.
Thus, lcptab[i] is achieved in O(log2 |llvtab|) time.

5.2.3 Space reduction of child-table
From the look at the Table 4.1, there is a lot of unused space in the child-table.
It is possible to reduce the space requirements just to a single field [1]. The
down field is necessary only if it does not have the same information as up
field.

An ℓ-interval [i..j] with k ℓ-indices has at most k + 1 child intervals. Con-
sider a new space-reduced array childtab′. Suppose [l1..r1], ..., [lk+1..rk+1]
are the child intervals of [i..j] and let iq be the first ℓq-index of the interval
ℓq-[lq..rq] for 1 ≤ q ≤ k + 1. We store indices i1, ..., ik in the childtab′[r1 +
1],...,childtab′[rk +1]. The remaining index ik+1 is stored in the down field of
childtab[rk + 1]. This index can be stored in the childtab′[rk + 1] because
rk + 1 is the last ℓ-index, therefore it is guaranteed the field is empty.

However, this raise a question whether it is possible to decide if childtab′[i]
contains the next ℓ-index or the down value of the childtab[i].

1. If lcptab[childtab′[i]] = lcptab[i], then it contains the nextℓIndex

2. If lcptab[childtab′[i]] > lcptab[i], then it contains the down value.

As for the up field, it is stored in the unused space of childtab′. Note
that childtab[i + 1].up ̸= ⊥ iff lcptab[i] > lcptab[i + 1]. In this case, it is
guaranteed childtab[i].nextℓIndex is empty and therefore childtab′[i] can
store the value childtab[i + 1].up. To check whether childtab′[i] contains
the value childtab[i+1].up, it is sufficient to only test lcptab[i] > lcptab[i+

47

5. Implementation

1]. In conclusion, although the child-table theoretically needs three fields, in
practice only one field is required to store the child-table.

5.2.4 RMQ for the suffix link table

The RMQ problem is heavily studied and nowadays, it is still being explored.
Gabow et al. [33] presented an algorithm that reduces the RMQ problem to
the least common ancestor problem by transforming the array into a Cartesian
tree. This however has a major drawbacks: 1) it uses too much space, 2) it
relies on the structures such as tree, which is similar to the suffix tree/suffix
array duality.

In this section, we are using the notation from [34] to describe the RMQ
solution. We denote an algorithm which preprocess the input in p(n) time
and handles queries in q(n) as ⟨p(n), q(n)⟩. For example, the naive method
with the notation above would be described as ⟨O(1),O(n)⟩, as it doesn’t need
preprocessing and it searches the array from i to j.

The recent most notable approach is an improved ⟨O(n),O(1)⟩ by Fischer
and Heun[35], which doesn’t need the Cartesian tree construction nor any
other dynamic data structures, thus making it an optimal algorithm. However,
it was shown that in practice the simple ⟨O(n),O(log n)⟩ outperforms the
⟨O(n),O(1)⟩ solutions (refer to the Fig. 4 and Fig. 5 in [35]).

Therefore for the ESA implementation, we have chosen the ⟨O(n),O(log n)⟩
hybrid RMQ structure, which uses two layered approach [36]. The bottom
layer requires no preprocessing and consist of the original array. As for the
top layer, it is divided into equal sized blocks and the minimum over each
block is computed. Hence, a minimum over a range is the minimum of each
block fully contained in the range and the indices on both ends of the range,
in partially contained blocks.

Suppose we use a ⟨p1(n), q1(n)⟩ for the block minima and ⟨p2(n), q2(n)⟩
within each block, with block size b. Total preprocessing time would be O(n+
p1(n

b) + (n
b)p2(b)) and the query time O(q1(n

b) + q2(b)). The sparse table has
complexity p1 = O(n log n), q1 = O(1) and the bottom layer is simply a naive
one. If we set the b = log n, the construction time would be:

O
(
n + p1

(n

b

)
+

(n

b

)
p2(b)

)
= O

(
n + n

b
log

(n

b

)
+

(n

b

))
= O

(
n + n

log n
log

(n

log n

)
+

(n

log n

))
= O

(
n + n +

(n

log n

))
= O(n)

48

5.2. Enhanced Suffix Array

As for the query time:

O
(
q1

(n

b

)
+ q2(b)

)
= O(1 + b)

= O(1 + log n)
= O(log n)

Thus, by setting the b = Θ(log n), we can achieve the RMQ with complex-
ity ⟨O(n),O(log n)⟩.

The implementation is located in the file /esa/utils/rmq{.hpp/.cpp}

5.2.5 Space complexity

In this section, we will have a look at the space complexity for the ESA struc-
ture. In the fullest form the ESA contains the input string, bwttab, suftab,
lcptab, childtab and suflink. Depending on the application, we can reduce
the other unused table. For example, for the maximal repeated pairs problem,
we don’t need the input string however we do need the knowledge of the left
character of every entry of the suftab, so here it can be replaced by the more
succint representation, the bwttab. However, in case we do keep the input
string, then bwttab can just be induced from the input string and hence we
save n bytes.

suftab each entry takes 4 bytes, thus overall 4n bytes.
lcptab with the reduced version, this takes a little more than n bytes.
childtab each entry takes 4 bytes (reduced version), so in total 4n bytes.
suflink each entry of suflink table takes 8 bytes, thus in total 8n bytes.

The total bytes required to store all the structures of the ESA is 18n bytes
(if we count 1n just for input string/bwttab). Thus, this implementation still
requires less space than even the recently improved implementations of suffix
tree, which requires 20 bytes per input character in the worst case [16].

5.2.6 Usage

In this last section, we’re going to present the usage of the implemented solu-
tions to each chosen problem. Every algorithm concerning the ESA is located
in the namespace esa except for the construction itself.

To construct the ESA structure, call ESA esa(str), where str is an input
string terminated with the sentinel character |. If the string contains the
sentinel character elsewhere, it throws an exception. The construction of the
ESA is implemented to create all enhancing data structures.

49

5. Implementation

Bottom-up traversal

The bottom-up traversal of every presented algorithm is very similar and as de-
scribed in the 4.2.2, it is sufficient to just specify the process function. Hence,
we’ve chosen the policy-based design which is an idiom for a class template
(host class) taking type parameters as input, each implementing a particular
interface called a policy. In our case, the host class is LcpInterval<Process>,
where Process is a policy. The host class can be seen on the Code 1.

template <typename Process = Algorithm>
class LcpInterval: private Process {
public:

typedef typename Process::node_t node;
/** Constructor accepting the ESA */
LcpInterval(const ESA & esa): Process(esa) { }
/** A traverse method which simulates the bottom-up manner.
* Returns the output of the Process algorithm */

auto traverse();
};

Listing 1: The LcpInterval host class

The Process policy should be an implementation of the interface Algorithm,
which defines the behaviour of the process function. The interface contains
the reference to the ESA and the basic block (node) of the stack without the
child information. Each child class of Algorithm will specify their node, if
needed.

class Algorithm{
public:

struct node_t;
/** Constructor accepting the ESA to work with */
Algorithm(const ESA & esa);
/** Process a node in a bottom-up manner. Processes a node */
void process(node_t & node);
/** The output of the algorithm */
auto output();

};

Listing 2: The Algorithm interface of the policy Process

50

5.2. Enhanced Suffix Array

Maximal pairs

With the mentioned implementation of the LcpInterval above, the problem
maximal repeated pairs has the implementation of the Algorithm interface in
the esa/algorithms/bottom/maximal_pairs.hpp.

ESA esa("acaaacatat|");
esa::LcpInterval<esa::MaximalPairs> lcpInterval(esa);
std::list<uval_t3> = lcpInterval.traverse();

Ziv-Lempel decomposition

Ziv-Lempel decomposition is very similar except the inner element of the stack
is slight different (described in the 4.5.1). It returns the pointer to the l and
s arrays.

uval_t *l, *s;
ESA esa("acaaacatat|");
esa::LcpInterval<esa::ZivLempel> lcpInterval(esa);
std::tie(s, l) = lcpInterval.traverse();

Top-down traversal
Top-down traversal is relying on the childtab, for which there are three es-
sential functions: ESA::getFirstLIndex and ESA::getNextLIndex. For the
child interval of ℓ-interval [i..j], one can use ESA::getChildInterval(uval_t
i, uval_t j). The supporting functions are ESA::getLcp(uval_t i, uval_t
j), which returns the lcp-value of the interval [i..j]. The last supporting func-
tion is to get the child m-interval of ℓ-interval which has character a on ℓ
position ESA::getInterval(uval_t i, uval_t j, char a).

ESA esa("acaaacatat|");
// decision query "Is pattern P a substring of S?"
std::cout << "The string 'aaa' "

<< (esa::isSubstring(esa, "aaa") ? "IS" : "IS NOT")
<< " a substring of string acaaacatat|" << std::endl;

// enumerative query "Where are all occurrences of P in S?"
V_NUM esa_res = esa::getAllOccurences(esa, "aa");
// Get all the shortest unique substrings
std::set<uval_t2> esa_res = esa::getUniqueSubstrings(esa);

51

5. Implementation

Traversal with suffix link table
The last usage of the ESA is the computation of matching statistics. If the
algorithm returns some ℓ−interval and the len is greater than zero, it returns
immediately i as the occurrence.

ESA esa("cacaccc|");
std::vector<uval_t2> res =

esa::greedyMatch(esa, "caacacacca");

ESA structure
We present the proposed ESA structure. The documentation comments and
variables were removed for the illustration.
class ESA{
public:

ESA(const STRING & str);
ESA(STRING && str);
~ESA();

const STRING & str() const;
const uval_t * sa() const;
const lcptab_t & lcp() const;
const char * bwt() const;
const uval_t * childtab() const;
const interval_t * suflink() const;
uval_t n() const;

uval_t2 getInterval(uval_t i, uval_t j, char a) const;
std::vector<uval_t2> getChildIntervals(uval_t i, uval_t j) const;
uval_t getLcp(uval_t i, uval_t j) const;
uval_t getFirstLIndex(uval_t i, uval_t j) const;
uval_t getNextLIndex(uval_t i) const;

private:
void constructSALCP();
void constructBWT();
void constructChildTab();
void constructSufLink();
void setBoundaries(std::queue<uval_t2> &, interval_t *) const;

};

Listing 3: The ESA structure for the illustration

52

Chapter 6
Testing

This chapter will be concerned about testing. The purpose of this is to ensure
that the application works correctly with the least errors. We have imple-
mented the set of unit tests with the test library Catch 2 [37].

6.1 Catch2
The main key features are that it’s just a header-file, therefore all it is needed
is just to include the header file, and it can be used immediately without any
external dependencies.

Test cases are written as a functions, which are self-registering, so all it
is needed is really just to define how the test case will look like. Each test
case can be divided into sections, hence it can be run in a complete isolation
without any fixtures. This is especially useful, when the one setup across the
multiple methods is needed but sometimes a setup is needed to be slightly
changed.

An example of test case taken from [37]:

#define CATCH_CONFIG_MAIN
#include "catch.hpp"
unsigned int Factorial(unsigned int number) {

return number > 1 ? Factorial(number-1)*number : 1;
}

TEST_CASE("Factorials are computed", "[factorial]") {
REQUIRE(Factorial(0) == 1);
REQUIRE(Factorial(3) == 6);
REQUIRE(Factorial(10) == 3628800);

}

53

6. Testing

Let’s break the example to explain how the test is defined. The test case is
registered with the macro TEST_CASE which takes two arguments – unique test
name in the string and optionally a tag. With the name and the tag, one can
run seperately a group of tests either by a tag or by specifying a wildcarded
test name. The REQUIRE macro is used for the test assertions. Rather than
a seperate macro for every type, this is expressed using the classic C/C++

syntax.
When seperating the tests into multiple files, there should be a main one

which has the #include line along with the #define CATCH_CONFIG_MAIN.
Otherwise it is just sufficient to include the header.

6.2 Unit testing
For the unit testing, we have implemented 19 test cases, which test most of the
available functionalities of the application (14203 assertions when running the
tests). Most of the functionality is initially tested with the strings for which
we know the values and can be single-handely computed. Afterwards, it is
tested with the Catch’s GENERATE macro which generates the listed values and
can be combined with another GENERATE to create multiple combinations. For
this we also implemented the naive algorithms to test against. An example of
testing the correctness of a suffix array:

TEST_CASE("Suffix array of a random string", "[sa]") {
uval_t j = GENERATE(100, 500, 1000), // string len

k = GENERATE(0, 5, 3, 2, 1); // 0 => full alphabet
for(uval_t i = 0; i < 5; ++ i) {
// generates the string with len j and alphabet k
STRING str = stringGenerator(j, k);
ESA esa(str);
uval_t n = str.size();
V_NUM sa(n), naive_sa(str);
for(uval_t i = 0; i < n; ++ i) sa[i] = esa.sa()[i];
REQUIRE(esa.n() == naive.size());
REQUIRE_THAT(sa, !Catch::VectorContains(n));
REQUIRE_THAT(sa, Catch::Equals(naive));

}
}

Thankfully, the tests revealed some bugs in the implementation, mostly
around the suffix tree algorithms, which were immediately fixed afterwards.
All the tests can be run in the command line with the command make test.
The set of the test cases can be found in the folder /tests/ and the name of
the file suggests what functionality it tests.

54

Chapter 7
Experimental results

This chapter focuses on the performance of both implemented solutions to the
chosen problems. The algorithms solved by ESA are prefixed with esa and
algorithms by suffix tree are prefixed suftree. First, we present the setup
environment for our experiments and afterwards the chosen data sets and their
characteristics.

7.1 Setup and Environment
All the functionalities were compiled with g++ -std=c++17 -ffast-math -g
-O3 -Wextra and the measurements were done on Intel Core i3-9100F CPU @
3.60Ghz, 16.0 GB RAM running in Ubuntu environment on Windows 10.

The experiments were conducted with the help of Benchmark library de-
veloped by Google [38]. The library was chosen because it has a great scale
of customizing the settings of the benchmark. The most notable is the func-
tion DoNotOptimize which helps to conduct the experiment without the op-
timalizations, i.e. without being dependent on the previous iterations. Every
experiment were conducted in 5 iterations.

7.2 Data sets
We chose the data sets from multiple sources, Manzini-Ferragina corpora1,
SMART-tool data source2, Pizza&Chili Corpus3 and lastly the online database
NCBI4 for the genome assembly. The whole chosen data set can be seen on
the Table 7.1. Most of the data are biology-related, but we also included the
italian and english texts.

1http://people.unipmn.it/manzini/lightweight/corpus/
2http://www.dmi.unict.it/ faro/smart/corpus.php
3http://pizzachili.dcc.uchile.cl/
4https://www.ncbi.nlm.nih.gov

55

7. Experimental results

Name Avg. LCP Max. LCP File size (in bytes) Description
ipromes 8.01 61 1,301,484 A snippet of italian text I promessi sposi
strep1 25.59 5,885 2,038,615 Genome of Streptococcus pneumoniae R6
strep2 35.57 5,985 2,160,842 Genome of Streptococcus pneumoniae TIGR4
world192 23.01 559 2,473,400 The CIA world fact book
hs 7.96 3,207 3,295,751 Homo sapiens protein
bible 13.97 551 4,047,392 The King James version of the bible
ecoli1 17.38 2,815 4,638,690 Genome of E. Coli bacterium
shaks 15.55 593 5,458,199 Collection of works of William Shakespeare
ecoli2 34.25 5,216 5,594,605 Genome of E. Coli O157:H7 bacterium
yeast1 42.95 8,375 12,157,105 Genome of S. cerevisiae bacterium
yeast2 40.83 10,147 12,747,577 Genome of S. pombe bacterium
chr22 1,979.25 199,999 34,553,758 Assembly of human chromosome 22
chr21 23.58 73,034 40,088,619 Assembly of human chromosome 21
protein50 166.19 25,822 52,241,887 Protein sequences from Swissprot database

Table 7.1: Data sets used for experiments sorted by the file size

7.3 Construction

In this section we are concerned with the running time and space consump-
tion of the construction of the suffix tree and the ESA. For the construction,
we have chosen the files with different size and characteristics. The space
requirements were measured with the resident set size, which is the memory
portion occupied by a process in main memory. The value is accessible from
the /proc/self/statm. Table 7.2 shows the results. It is clear that ESA
structure is superior to the suffix tree in both the running time and especially
the space comsumption, where ESA uses almost 10 times less space.

Running time Space consumption
Name ESA Suffix Tree ESA Suffix Tree
ipromes 0.62 1.11 41,012 313,832
bible 2.32 3.42 128,284 986,572
yeast1 9.64 13.71 307,928 3,134,880
chr22 29.31 40.35 859,476 9,068,832
protein50 69.19 72.08 1,482,524 9,598,800

Table 7.2: Running time (in seconds) and space requirements (in kB).

We detected that the most time consuming phase of construction of ESA
is the suffix array construction. We compared our implemented SAIS with the
very careful optimized implementation of Yuta Mori [39] and tested on three
biggest files from our data set. From the results, the Yuta Mori’s outperforms
ours by at least twice (depending on the file size) the running time. (1) chr22
– 10.94s vs. 20.31s, (2) chr21 – 13.44s vs. 24.80s, and (3) protein50 – 19.75s
vs. 45.36s.

56

7.4. Performance of Algorithms

7.4 Performance of Algorithms
In this section, we present the experiments done on the individual algorithms
and compare the running time of the algorithms using the suffix tree and the
ESA. To reflect the running time of each algorithms, the construction time is
excluded from the measurements. For every algorithm, we used only a subset
of the chosen data set.

7.4.1 Computing maximal repeated pairs
For the computation of maximal repeated pairs we divided the running time
for different ℓ, which indicates the search for the repeats of length ≥ ℓ. For the
experiment, we have chosen the files yeast1, protein50, shaks and world192,
each of them possesses different size of alphabet and length. Table 7.3 reveals
that ESA is generally faster than suffix tree.

protein50 yeast1 shaks world192
ℓ #reps esa st #reps esa st #reps esa st #reps esa st

18 76,792,738 23.61 157.48 306,646 3.50 4.15 162,368,777 8.05 9.89 5,021,355 1.40 1.44
20 65,955,648 22.91 119.44 175,562 3.44 4.19 125,172,713 6.33 8.18 3,534,608 1.20 1.38
23 52,031,187 21.88 57.67 84,174 3.24 4.13 77,042,967 4.18 5.06 2,350,986 1.02 1.33
25 41,020,350 21.27 53.78 56,685 3.29 4.26 55,730,383 3.23 4.25 1,828,920 0.93 1.31
30 23,545,736 19.99 31.52 32,202 3.23 4.13 24,739,511 1.91 2.73 935,168 0.82 1.29
40 11,052,382 18.14 22.14 20,768 3.20 4.13 5,866,133 1.02 1.92 491,989 0.73 1.28
60 3,690,804 17.17 21.55 13,907 3.17 4.12 32,705 0.71 1.70 108,758 0.67 1.26

Table 7.3: Measurement of the maximal repeated pairs computation. The running
time is in seconds, as for the columns, esa represents the ESA method and st is the
Suffix Tree. #reps gives the number of repeats of length ≥ ℓ.

7.4.2 Ziv-Lempel decomposition
We implemented the algorithms described in Sections 3.4 and 4.5. The algo-
rithm based on the ESA is far superior because it uses only the properties of
the lcp-tree intervals with the SA and in the combination it reaches overall a
better running time. For the experiment, we used the texts bible, world192,
shaks and the italian text ipromes.

file esa suffix tree
bible 0.57 4.99
world192 0.25 2.54
ipromes 0.12 1.32
shaks 0.12 1.32

Table 7.4: Measurement of Ziv-Lempel decomposition. The running time is
in seconds.

57

7. Experimental results

7.4.3 Pattern searching
For the third experiment, we have chosen files ecoli1, yeast1, bible and shaks to
measure the running time of searching for the patterns. We use this strategy:
for every iteration we generated one million substrings of the input string. The
length of the substrings are categorized into intervals on which we conducted
the experiment. To simulate the pattern not occurring in the string, we simply
reversed it for every even pattern. The lengths of the substrings are evenly
distributed over the intervals I = { (20, 30), (30, 40), (40, 50) }.

I (20,30) (30, 40) (40, 50)
File esa st esa st esa st

ecoli1 1.09 1.80 1.10 1.67 1.08 1.65
yeast1 1.37 2.08 1.38 2.06 1.36 2.74
bible 1.74 1.39 1.73 1.36 1.73 1.35
shaks 2.43 9.73 2.25 3.25 2.16 1.84

Table 7.5: Measurement of the pattern searching. The running time is in seconds.

The experiment revealed that for the small alphabet, the ESA is faster.
However when the alphabet grows the ESA is slightly slower than Suffix Tree.
This slowdown is most probably caused by the searching of the interval that
contains the character a at position ℓ. However, it is still clear, that it can be
compete with other methods.

7.4.4 Shortest unique substrings
The shortest unique substrings is sensible for the genomes, therefore we con-
ducted an experiment on the files: hs, ecoli1, yeast1, chr21 and protein50.
Clearly, the ESA is faster than the Suffix tree method. The results can be
seen in the Table 7.7. We also measured the number of processed lcp-intervals
and the percentage of it to display the ratio of processed and total amount of
lcp-intervals in practice.

File esa suffix tree cnt len processed total percentage
hs 0.00413 0.309 1,657 9 7,627 1,251,682 0.60%

ecoli1 0.00228 0.560 3 7 11,392 2,978,796 0.38%
yeast1 0.0167 1.571 383 9 92,863 7,905,335 1.17%
ch21 0.0263 5.609 1468 9 93,114 27,720,199 0.33%

protein50 8.4e-5 0.00663 25 2 51 27,439,445 0.0001%

Table 7.6: Measurement of the pattern searching. The running time is in seconds.
The column cnt indicates the number of shortest unique substrings, len indicates
the length of the shortest substrings, processed indicates the number of processed
lcp-intervals and the total is the number of lcp-intervals in lcp-intrerval tree.

58

7.4. Performance of Algorithms

7.4.5 Computing matching statistics
The last experiment we conducted is computing the matching statistics. For
this measurement, we used four pairs of similar genomes: yeast1 with yeast2 as
yeast, strep1 with strep2 as strep, chr21 and chr22 as chr, and ecoli1, ecoli2 as
ecoli. We build the ESA and suffix tree for the smaller input file and proceed
the matching statistics against the bigger one.

Genome pair Total length esa suffix tree
strep 4,199,457 0.589 0.561
ecoli 10,233,295 0.268 0.129
yeast 24,904,682 5.18 5.73
chr 74,642,377 16.682 16.632

Table 7.7: Measurement of the matching statistics computation. The running time
is in seconds.

In most cases the experiment shows that the suffix tree is slightly faster
than the ESA. This is probably due to the rescanning step and querying for
the suffix link interval. However, from the results, the ESA method is still
very competitive with the suffix tree method.

59

Conclusion

In this chapter, we summarize the thesis and conclude the results. We also
present some topics for the future improvements.

Evaluation of the thesis
First, the definitions and construction of the enhanced suffix array and suffix
tree had to be studied. This was fulfilled in the chapters 3 and 4.

Second goal was to propose a data structure of the enhanced suffix array,
which is the main contribution of the thesis and chapter 5 is dedicated to
this goal. Furthermore, we studied the multiple implementation of the suffix
array construction, lcp-array construction and RMQ algorithms to create an
optimal solution.

Along with the data structure, the algorithms to the chosen problems
which uses at least three different suffix tree traversals were implemented in
C++ using the C++17 standard. These problems were also implemented with
the ESA to simulate the suffix tree traversal.

In the chapter 6 with the usage of Catch2 library, we properly test the
functionalities of the enhanced suffix array and the algorithms with the unit
tests on fixed inputs and the randomized inputs.

Finally, the chapter 7 covers the conducted experiments to compare and
show the effectiveness of the implemented algorithms.

Future Work
As mentioned earlier, the DivSufSort, which is widely agreed to be the fastest
known algorithm for the suffix array construction, could be thoroughly studied
and replace the current implementation of the SAIS. In 2017, Fischer [29] also
presented the enhancement for the algorithm with lcp construction and the
concise description to understand the algorithm. The experiments revealed

61

Conclusion

it to be competitive with existing implementations and in some cases even
faster.

As the RMQ is heavily studied, the enhanced suffix array structure could
be further enhanced by a better RMQ solution. The succinct one can be
used to replace and further reduce the space consumption, while retaining the
capability to simulate the traversals [40].

Contribution
The thesis is an implementation type, therefore the main contribution of the
thesis is the proposed enhanced suffix array, which eventually can be imported
to the ALIB5 framework.

5The Algorithm Library Toolkit – https://gitlab.fit.cvut.cz/algorithms-library-toolkit

62

Bibliography

[1] Abouelhoda, M. I.; Kurtz, S.; et al. Replacing suffix trees with enhanced
suffix arrays. Journal of Discrete Algorithms, 2004: pp. 53–86, ISSN
1570-8667. Available from: http://www.sciencedirect.com/science/
article/pii/S1570866703000650

[2] Manber, U.; Myers, G. Suffix Arrays: A New Method for On-Line String
Searches. SIAM Journal on Computing, volume 22, no. 5, 1993: pp. 935–
948, doi:10.1137/0222058. Available from: https://doi.org/10.1137/
0222058

[3] Gusfield, D. Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. USA: Cambridge University Press,
1997, ISBN 0521585198.

[4] Kärkkäinen, J.; Sanders, P.; et al. Simple Linear Work Suffix Array Con-
struction. 06 2003, doi:10.1007/3-540-45061-0_73.

[5] Ko, P.; Aluru, S. Space efficient linear time construction of suffix arrays.
Journal of Discrete Algorithms, volume 3, no. 2, 2005: pp. 143 – 156,
ISSN 1570-8667, doi:https://doi.org/10.1016/j.jda.2004.08.002, combina-
torial Pattern Matching (CPM) Special Issue. Available from: http:
//www.sciencedirect.com/science/article/pii/S1570866704000498

[6] Nong, G.; Zhang, S.; et al. Linear Suffix Array Construction by Almost
Pure Induced-Sorting. Proceedings of the Data Compression Conference,
03 2009: pp. 193–202, doi:10.1109/DCC.2009.42.

[7] Crochemore, M.; Hancart, C.; et al. Algorithms on Strings. Cambridge
University Press, 2007, doi:10.1017/CBO9780511546853.

[8] Holub, J. Introduction, basic notions and border array. 2019, [cit. 2020-
02-17].

63

http://www.sciencedirect.com/science/article/pii/S1570866703000650
http://www.sciencedirect.com/science/article/pii/S1570866703000650
https://doi.org/10.1137/0222058
https://doi.org/10.1137/0222058
http://www.sciencedirect.com/science/article/pii/S1570866704000498
http://www.sciencedirect.com/science/article/pii/S1570866704000498

Bibliography

[9] Mareš, M.; Valla, T. Průvodce labyrintem algoritmů. CZ.NIC, z.s.p.o.,
2017, ISBN 9788088168195.

[10] Knuth, D. E.; Morris, J. H.; et al. Fast Pattern Matching in Strings.
SIAM Journal on Computing, volume 6, no. 2, March 1977: pp. 323–350,
ISSN 0097-5397.

[11] Boyer, R. S.; Moore, J. S. A Fast String Searching Algorithm. Com-
mun. ACM, volume 20, no. 10, Oct. 1977: p. 762–772, ISSN 0001-0782,
doi:10.1145/359842.359859. Available from: https://doi.org/10.1145/
359842.359859

[12] Crochemore, M.; Hancart, C.; et al. Algorithms on Strings. USA: Cam-
bridge University Press, 2014, ISBN 1107670993.

[13] Weiner, P. Linear Pattern Matching Algorithm. 11 1973, pp. 1–11, doi:
10.1109/SWAT.1973.13.

[14] McCreight, E. M. A Space-Economical Suffix Tree Construction Algo-
rithm. J. ACM, volume 23, no. 2, 1976: p. 262–272, ISSN 0004-5411,
doi:10.1145/321941.321946. Available from: https://doi.org/10.1145/
321941.321946

[15] Ukkonen, E. On-Line Construction of Suffix Trees. Algorithmica, vol-
ume 14, no. 3, 1995: p. 249–260, doi:10.1007/BF01206331. Available from:
https://doi.org/10.1007/BF01206331

[16] Kurtz, S. Reducing the Space Requirement of Suffix Trees. Software –
Practice and Experience, volume 29, 1999: pp. 1149–1171.

[17] COMPSCI 260, C. S. D. U. Suffix Trees and its Construction [online].
[cit. 2020-03-08]. Available from: https://www2.cs.duke.edu/courses/
fall14/compsci260/resources/suffix.trees.in.detail.pdf

[18] Lander, E.; Chen, C.; et al. Initial Sequencing and Analysis of the Human
Genome. Nature, volume 409, 02 2001.

[19] Ziv, J.; Lempel, A. A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, volume 23, no. 3, May 1977:
pp. 337–343, ISSN 1557-9654, doi:10.1109/TIT.1977.1055714.

[20] Ziv, J.; Lempel, A. Compression of individual sequences via variable-rate
coding. IEEE Transactions on Information Theory, volume 24, no. 5,
Sep. 1978: pp. 530–536, ISSN 1557-9654, doi:10.1109/TIT.1978.1055934.

[21] Aho, A.; Corasick, M. Efficient string matching: An aid to bibliographic
search. Commun. ACM, volume 18, 06 1975: pp. 333–340, doi:10.1145/
360825.360855.

64

https://doi.org/10.1145/359842.359859
https://doi.org/10.1145/359842.359859
https://doi.org/10.1145/321941.321946
https://doi.org/10.1145/321941.321946
https://doi.org/10.1007/BF01206331
https://www2.cs.duke.edu/courses/fall14/compsci260/resources/suffix.trees.in.detail.pdf
https://www2.cs.duke.edu/courses/fall14/compsci260/resources/suffix.trees.in.detail.pdf

Bibliography

[22] Chang, W. I.; Lawler, E. L. Approximate string matching in sublinear ex-
pected time. Proceedings [1990] 31st Annual Symposium on Foundations
of Computer Science, 1990: pp. 116–124 vol.1.

[23] Nong, G.; Zhang, S.; et al. Linear Suffix Array Construction by Almost
Pure Induced-Sorting. Proceedings of the Data Compression Conference,
03 2009: pp. 193–202, doi:10.1109/DCC.2009.42.

[24] Fischer, J.; Kurpicz, F. Dismantling DivSufSort. CoRR, volume
abs/1710.01896, 2017, 1710.01896. Available from: http://arxiv.org/
abs/1710.01896

[25] Burrows, M.; Wheeler, D. J. A block-sorting lossless data compression
algorithm. Technical report, 1994.

[26] Kasai, T.; Lee, G.; et al. Linear-Time Longest-Common-Prefix Com-
putation in Suffix Arrays and Its Applications. 06 2001, pp. 181–192,
doi:10.1007/3-540-48194-X_17.

[27] Manzini, G. Two Space Saving Tricks for Linear Time LCP Array Com-
putation. 07 2004, pp. 372–383, doi:10.1007/978-3-540-27810-8_32.

[28] Kärkkäinen, J.; Manzini, G.; et al. Permuted Longest-Common-Prefix
Array. 06 2009, pp. 181–192, doi:10.1007/978-3-642-02441-2_17.

[29] Fischer, J. Inducing the LCP-Array. CoRR, volume abs/1101.3448, 2011,
1101.3448. Available from: http://arxiv.org/abs/1101.3448

[30] Okanohara, D.; Sadakane, K. A Linear-Time Burrows-Wheeler Trans-
form Using Induced Sorting. 08 2009, pp. 90–101, doi:10.1007/978-3-642-
03784-9_9.

[31] Kärkkäinen, J.; Manzini, G.; et al. Permuted Longest-Common-Prefix
Array. 06 2009, pp. 181–192, doi:10.1007/978-3-642-02441-2_17.

[32] Kurpicz, F. sais-lite-lcp. https://github.com/kurpicz/sais-lite-
lcp, 2015, [Cited 2020-04-01].

[33] Gabow, H. N.; Bentley, J. L.; et al. Scaling and related techniques for
geometry problems. In STOC ’84, 1984.

[34] Bender, M.; Farach-Colton, M.; et al. Lowest common ancestors in trees
and directed acyclic graphs. Journal of Algorithms, volume 57, 11 2005:
pp. 75–94, doi:10.1016/j.jalgor.2005.08.001.

[35] Fischer, J.; Heun, V. Theoretical and Practical Improvements on the
RMQ-Problem with Applications to LCA and LCE. In Proceedings of the
16th Annual Symposium on Combinatorial Pattern Matching (CPM’06),

65

1710.01896
http://arxiv.org/abs/1710.01896
http://arxiv.org/abs/1710.01896
1101.3448
http://arxiv.org/abs/1101.3448
https://github.com/kurpicz/sais-lite-lcp
https://github.com/kurpicz/sais-lite-lcp

Bibliography

Lecture Notes in Computer Science, volume 4009, edited by M. Lewen-
stein; G. Valiente, Barcelona, Spain, July 5-7, 2006: Springer-Verlag,
2006, pp. 36–48, doi:10.1007/11780441_5.

[36] Schwarz, K.; Leon, A.; et al. Range Minimum Queries [online]. [cit.
2020-04-02]. Available from: https://web.stanford.edu/class/cs166/
lectures/00/Slides00.pdf

[37] CatchOrg. Catch2. https://github.com/catchorg/Catch2/, 2013,
[Cited 2020-04-05].

[38] Google. Benchmark. https://github.com/google/benchmark, 2015,
[Cited 2020-04-13].

[39] Mori, Y. An Implementation of the Induced sorting algorithm. https:
//sites.google.com/site/yuta256/sais, 2010, [Cited 2020-04-13].

[40] Fischer, J.; Heun, V. A New Succinct Representation of RMQ-
Information and Improvements in the Enhanced Suffix Array. In Proceed-
ings of the First International Conference on Combinatorics, Algorithms,
Probabilistic and Experimental Methodologies, ESCAPE’07, Berlin, Hei-
delberg: Springer-Verlag, 2007, ISBN 3540744495, p. 459–470.

66

https://web.stanford.edu/class/cs166/lectures/00/Slides00.pdf
https://web.stanford.edu/class/cs166/lectures/00/Slides00.pdf
https://github.com/catchorg/Catch2/
https://github.com/google/benchmark
https://sites.google.com/site/yuta256/sais
https://sites.google.com/site/yuta256/sais

Appendix A
Acronyms

ALIB The Algorithm Library Toolkit

DAG Directed acyclic graph

ESA Enhanced suffix array

LCP Longest common prefix

RMQ Range minimum query

SA Suffix array

67

Appendix B
Contents of enclosed CD

readme.txt.........................the file with CD contents description
src...the directory of source codes

implementation..............................implementation sources
text.................the directory of LATEX source codes of the thesis

thesis.pdf...............................the thesis text in PDF format

69

	Introduction
	Preliminaries
	Alphabet, String
	Graph

	Suffix Tree
	Definition
	Construction
	Ukkonen's algorithm
	Suffix extensions
	Suffix links
	Trick: Skip/count
	Edge-label compression
	Trick: Once a leaf, always a leaf
	Trick: Halt condition
	Putting it together

	Applications

	Enhanced Suffix Array
	BWT table
	LCP array
	Lcp-intervals
	Lcp-interval tree

	Child-table
	Construction
	Determining child intervals

	Suffix link table
	Construction

	Applications
	Bottom-up traversals
	Top-down traversals
	Traversal with suffix links

	Implementation
	Suffix Tree
	Enhanced Suffix Array
	Suffix Array
	LCP Array
	Space reduction of child-table
	RMQ for the suffix link table
	Space complexity
	Usage

	Testing
	Catch2
	Unit testing

	Experimental results
	Setup and Environment
	Data sets
	Construction
	Performance of Algorithms
	Computing maximal repeated pairs
	Ziv-Lempel decomposition
	Pattern searching
	Shortest unique substrings
	Computing matching statistics

	Conclusion
	Evaluation of the thesis
	Future Work
	Contribution

	Bibliography
	Acronyms
	Contents of enclosed CD

