
Ing. Michal Valenta, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague December 18, 2017

ASSIGNMENT OF BACHELOR’S THESIS
 Title: FITCOIN: an Android light wallet

 Student: Minh Trieu Quang

 Supervisor: Mgr. Jan Starý, Ph.D.

 Study Programme: Informatics

 Study Branch: Web and Software Engineering

 Department: Department of Software Engineering

 Validity: Until the end of summer semester 2018/19

Instructions

Create the following parts of the FITCOIN crypto currency, as developed by Dvořák, Pajskr, Tománek in
parallel works:

1. Descride how mobile wallets of cryptocurrencies obtain and verify transactions, not being full nodes.
2. Describe a simple protocol of such a communication for FITCOIN.
3. Implement an Android light wallet for FITCOIN that supports:
3a. maintaining balances on user's accounts.
3b. entering, signing and sending transactions.
4. Document your application.
5. Test you application.

References

Satoshi Nakamoto, Bitcoin: A Peer-to-Peer Electronic Cash System. [https://bitcoin.org/bitcoin.pdf]

Bachelor’s thesis

FITCOIN: an Android light wallet

Minh Trieu Quang

Department of Sotware Engineering
Supervisor: Mgr. Jan Starý, Ph.D.

May 13, 2018

Acknowledgements

I would like to thank my supervisor Mgr. Jan Starý, Ph.D. for his incredible
guidance, patience and the support during the entire time on writing this
thesis.

My thanks also goes to my dear friends Vojtěch Badalec and Tuan Do for
introducing me to this amazingly interesting topic about cryptocurrencies and
Laura Tichá and her mother for lending me an Android mobile phone to work
with.

I would also like to give my special thanks to the FITnam organization
which supported me by de-stressing me and making this thesis period more
fun and enjoyable.

Last but not the least, I would like to give a big thanks to my family: my
parents and my brother for supporting me throughout writing this thesis, not
to mention through my studies on CTU FIT.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 13, 2018 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2018 Minh Trieu Quang. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Trieu Quang, Minh. FITCOIN: an Android light wallet. Bachelor’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2018.

Abstrakt

FITcoin je kryptoměna, která je paralelně vyvíjena dalšími studenty FIT
ČVUT. Jedná se o triviální verzi Bitcoinu, která slouží ke studijním účelům
pochopit její náležitosti a technologie, které tvoří základ každé kryptoměny.

Cílem této práce je popsat, jak obecně fungují mobilní peněženky, jakým
způsobem získávají a ověřují transakce. Na základě této analýzy navrhnout
a vytvořit mobilní peněženku v operačním systému Android a popsat komu-
nikaci kryptoměny FITcoin. Zvolený problém byl vyřešený za pomocí Bloom
filteru a metod kryptografie na bázi eliptických křivek. Výsledný prototyp je
zdokumentovaný a důkladně otestovaný. V příloze práce lze nalézt aplikační
balíček výsledného prototypu a snímky z jejího používání.

Klíčová slova mobilní peněženka v OS Android, analýza kryptoměny Bit-
coin, simple verification payment, blockchain, lightweight client, transakce v
kryptoměnách, komunikační protokol v peněženkách, Bloomův filtr, fitcoin

vii

Abstract

FITcoin is a trivial cryptocurrency, which is developed by students of CTU
FIT. It is a trivial form of Bitcoin which serves for study purposes to under-
stand its requisites and technologies which form the basis of every cryptoc-
curency.

The goal of this thesis is to describe how a mobile wallet works, how
it obtains and verifies the transactions. Based on this analysis, design and
implement a mobile wallet in the operating system Android and describe a
communication protocol for cryptocurrency FITcoin. The prototype is doc-
umented and thoroughly tested. The application package of the resulting
prototype and screenshots of the usage can be found in the attachments.

Keywords mobile wallet in OS Android, general analysis of cryptocurrency
Bitcoin, simple verification payment, blockchain, lightweight client, transac-
tions in cryptocurrency, communication protocol of wallets, Bloom filter, fit-
coin

viii

Contents

Introduction 1

Goal 3

1 Cryptocurrency 5
1.1 What is cryptocurrency? . 5
1.2 Elliptic Curve Cryptography 5
1.3 Keys, addresses . 6
1.4 Blockchain . 7
1.5 Mining . 7
1.6 Network . 8
1.7 Lightweight nodes . 9
1.8 Wallets . 11
1.9 Transactions . 13

2 Analysis and Design 15
2.1 FITcoin as a cryptocurrency . 15
2.2 Target base . 16
2.3 State of the Art . 16
2.4 Application requirements . 18
2.5 Architecture . 19
2.6 Communication protocol . 19
2.7 Transaction design . 20
2.8 Storage design . 21
2.9 Wireframes . 22
2.10 Models . 24

3 Implementation 27
3.1 Language . 27

ix

3.2 Development tools . 27
3.3 Libraries . 28
3.4 Developing process . 28
3.5 Code preview . 30

4 Documentation 33
4.1 Javadoc . 33
4.2 Available network messages . 33
4.3 User manual . 35

5 Testing 37
5.1 Unit testing . 37
5.2 User testing . 37

Conclusion 39

Bibliography 41

A Acronyms 45

B Contents of enclosed CD 47

x

List of Figures

1.1 The merkle tree taken from [1]. 10

2.1 Bitcoin wallet screenshots. 17
2.2 Mycelium screenshots from [2]. 17
2.3 Application requirements . 18
2.4 Domain model describing the transaction 20
2.5 Relational model . 21
2.6 Wireframes of the main page. 23
2.7 Wireframes of the actions. 23
2.8 Wireframes of the set-up page. 24
2.9 Activity diagram of sending the transaciton. 25
2.10 The use cases of the final application. 26

xi

List of Tables

4.1 User manual . 35

xiii

Introduction

Nowadays, the number of smartphone users has been rapidly increasing. Peo-
ple use smartphones to communicate, search for information and mostly use
them to simplify their life by having all the varied applications for their daily
use. For instance, one of those application may be for financial organization
which let them manipulate their bank account.

For the past few years, there has been a huge impact on our financial world
in a form of cryptocurrencies. Mostly it is about Bitcoin but there are a lot
of derived currencies. Since Bitcoin is open-source, many people are trying to
improve this concept and find a balance between safety and speed.

A huge amount of people found their interest in these currencies and they
started to invest in them and exchange them. It became so popular to the
point where many services and shops are offering a possibility to pay with some
of the most popular cryptocurrencies. Therefore these people will certainly
start seeking an app to manage their assets. Since mobiles don’t have such a
huge storage as computers, it can only be used for sending and obtaining the
transactions via a full node which is usually a computer. Thus, mobiles can
only be a light node.

I have chosen this topic because in my humble opinion I think the concept
of blockchain is a key to storing digital data which ensures safety. For example,
Estonia has most of their government data in a form of blockchain.

In my thesis, I will analyze and describe the implementation of a mo-
bile wallet for the trivial form of cryptocurrency FITcoin which is also being
developed by CTU FIT students Karel Pajskr (FITcoin: peer-to-peer commu-
nication), Mikuláš Dvořák (a blockchain for FITcoin), Jan Tománek (FITcoin:
trees of transactions) in parallel works and should aim to help people under-
stand the current problematic.

My thesis is structured as follows. Firstly, I will describe what cryptocur-
rency is in general, its requisites and how it works. Secondly, how the mobile
wallet communicates with the network, which will lead to its implementation
and lastly the implementation of the mobile wallet itself.

1

Goal

The goal of the research part of the Bachelor thesis is to understand the
current controversial problematic and grasp the basic terms of cryptocurrency,
to analyze and design the mobile wallet for the trivial form of cryptocurrency
FITcoin inspired by the Bitcoin itself, and how it communicates with the
network.

The practical part will be concerned in creating a functional prototype of
a mobile wallet in operating system Android, which will communicate with
the FITcoin network. A user will be able to create, send, verify and receive
transactions in a simple yet elegant GUI. The application will be tested and
documented in the last chapter.

3

Chapter 1
Cryptocurrency

1.1 What is cryptocurrency?
Cryptocurrency (or alternative coin) is considered as a digital asset designed
as a medium of exchange based on the usage of an elliptic curve cryptography
to secure and control its transactions, creating them and verifying them. In
this text, I will refer to these assets as coins.

Cryptocurrencies are decentralized using peer-to-peer technique so there
is no central system controlling it, such as a central bank. It works com-
pletely independently through a distributed public transaction ledger called
blockchain.

Cryptocurrencies are also known for their anonymity since these coins
are tied rather to keys (or addresses) than people so the owners cannot be
identified, but all transactions are being kept publicly [3].

1.2 Elliptic Curve Cryptography
Elliptic curve cryptography (ECC) is a type of asymmetric cryptography over
finite fields. Asymmetric cryptography, or public key cryptography, is a system
that uses a pair of keys: a private and a public key and it is used to authen-
ticate and encrypt messages. Primarily, it is deployed in a communication
between parties, where everyone knows the public key but only the owner
has his private key. Many algorithms of asymmetric cryptography have a set
of mathematical constants, for example domain parameters, and require that
everyone in the communication knows about them [4].

Mathematical operation in ECC is defined over an elliptic curve

y2 = x3 + ax + b.

With various a and b, the function gives a different elliptic curve. Every point
(x, y), that solves this equation, lies on the elliptic curve.

5

1. Cryptocurrency

ECC unlike the first-generation asymmetrical algorithms, has huge advan-
tages. First, it uses shorter key. It means less computing power, generates
less data and generates faster signatures and still get the same level of secu-
rity [5]. Second, the public keys are generated from private keys and this is a
fundamental feature in this problematic.

ECC can be used to generate digital signatures. Digital signature is a
string that is produced by the private key applied to the data set we want
to sign. The public key is then being used to verify this signature. This
makes it useful, since everyone with the access to the public key can verify
the transactions while only the owner can produce a valid signature with
the private key. The digital signature algorithm based on elliptic curve is
called Elliptic Curve Digital Signature Algorithm (ECDSA). ECDSA takes
parameters (curve, G, n), where curve is an elliptic curve, G is the base point
of a prime order on the elliptic curve and n the order of G.

The randomness in signature is very important so one must put attention
while generating the signatures. The signature algorithm uses a random key k
and if the same value k is used twice, then the private key can be calculated [1].

The curve that is being used in Bitcoin is secp256k1, which is defined
in [6]. This became popular thanks to its properties. Unlike many commonly-
used curves, secp256k1 has non-random structure which is very efficient for
computation. The equation is

y2 = x3 + 7,

and is defined over finite field Fp, where p is a prime order and is defined as
2256 − 232 − 29 − 28 − 27 − 26 − 24 − 1.

1.3 Keys, addresses
Ownership of coins is established through digital keys and digital signatures.
The digital keys are stored in a wallet and generating them does not affect
the cryptocurrency network. These keys come in a pair consisting of a public
key and a private key.

There is an analogy to grasp this problem – “Think of the public key as
similar to a bank account number and the private key as similar to the secret
PIN,…” [1].

Private key is a picked number which we use in elliptic curve multiplication
(one-way cryptographic function) to generate a public key. So the important
part is to store private keys because public keys can be mathematically com-
puted from them, however it does not work the other way.

Public key is cryptographically calculated point from the private key where
the function is irreversible. The reverse problem is called “finding the discrete
logarithm” which can be very difficult as trying all the possible values is very
time-consuming.

6

1.4. Blockchain

Address is a derived form of public key made from a hash function. It can
be shared with anyone and allows recipient to obtain coins.

Hash function is a one-way cryptographic function that produces a string
called a hash. You can put any data in the hash function and it will output
a hash that identifies those data. By changing a slightest bit in the data, the
hash would also change. The hash is commonly used to verify the integrity of
the data set.

1.4 Blockchain
Blockchain is a modern technology for digital assets that cryptographically
secures the data, as the name says, in a chain of blocks. It is commonly
visualized as a stack, hence the distance between the first block and the most
recent one is referred as a height [1]. A container data structure block consists
of two parts, a block header, which contains the hash of the previous block,
a timestamp and information connected to mining, which will be discussed
later. The second part of the block is a list of the transactions.

In the digital currency scheme, there is a huge potential flaw called double
spending. It is a huge risk, where the digital asset can be easily falsified
or reproduced and therefore can be spent twice. Physical currencies do not
have these issues since they cannot be replicated so easily and are more easily
verified [7].

This was a concern initially with Bitcoin since it doesn’t use any central
authority to be able to verify it. However, it was solved by conceptualizing
the blockchain into Bitcoin by a person or group of people Satoshi Nakamoto
in 2008. Bitcoin requires that all the valid transactions are included in the
blockchain [8].

The concept of chaining has a security advantage against attackers. Let’s
have a look at blocks A, B chained in that order, each having a unique hash.
If we go back to block A and alter it, the hash would change for block A even
for B, since the block B is hashed with its data and the hash of the block A.

Blockchain, for the use as a public ledger, is managed by a peer-to-peer
network following the rules of consensus. Any system, application or wallet
that participates in the peer-to-peer network using the currency’s protocol is
called a node. Every node starts with a blockchain at least with one block.
The first one is always statically encoded and is called Genesis block. The
process of generating the blocks is called mining and the nodes doing such
thing are miners.

1.5 Mining
Mining is a decentralized computational process that proposes a block by
hashing it with the header of the most recent block and a nonce (an incre-

7

1. Cryptocurrency

mental number), and comparing it with the target value. Target value is being
determined by the mining difficulty, which means if the blocks are mined too
fast, the difficulty is increased. That is, as more miners join the network, the
block creation increases and therefore the mining difficulty increases.

For the block to be accepted, the SHA-256 hash of the block must begin
with a number of zero bits higher or equal to the target value. The probability
of generating such hash is very low, so many attempts must be made. In each
attempt, a nonce is increased, which is a number hashed with the block data.
This is based on the hashcash Proof-of-Work and these variables, specifically
a nonce and target difficulty, are also included in the block header [8].

After the hash is found, it must be verified by the other nodes. On top of
that, the miner has to validate all the transactions before it is included into
the blockchain. If the block is invalid, the network would reject the block and
the miner would have wasted his time computing the hash for it.

It is intentionally designed to be difficult and therefore a block reward
is given to the miner who finds it. It is created as the first transaction in
the block by the miner and is known as a coinbase transaction. This creates
an incentive for incoming miners. As miners are joining the network, more
security to the network is provided and this is what makes the cryptocurrency
decentralized [9].

The block reward has also an another meaning. It is a constant rate of
generating new coins and it is the only way how the network generates new
coins.

There is a flaw named 51% attack, where an attacker controls more than
50% of the network’s computing power. Currently, to be capable of perform-
ing such an attack, enormously expensive equipment is needed and that is
economically impractical and might be even impossible [10].

1.6 Network
As previously mentioned, the network of cryptocurrency is structured as a
peer-to-peer (P2P) network, which means that the nodes participating in the
network are peers to each other, and are all equal. There is no “special” node,
every node shares the same burden of providing the network services. The
network is connected in a flat topology, that means there is no central server
within the hierarchy of the network.

Despite every node being equal, each of them can have different roles
depending on the functionality they support. A node can have these functions:
routing, the blockchain database, mining and wallet services [1]. Every node
includes routing function, which establishes the participation in the network.
The type of nodes described in [1] are distinguished as:

8

1.7. Lightweight nodes

Full node is a node that maintains a complete and up-to-date copy of the
blockchain. It can autonomously verify any transaction without any
external help.

Mining node is a node that does mining as described in the section Mining.
Typically, they would also maintain the full blockchain otherwise they
would put themselves at disadvantages of finding a block. They would
need to rely on the external node to validate the incoming transactions
that would be added in the block, they have just found.

Lightweight node is mostly run on space and power constrained devices,
such as smartphones, tablets or embedded systems and therefore don’t
have the ability to store the full blockchain. These nodes are becoming
the most common form of a node, especially for wallets.

1.7 Lightweight nodes

As already outlined in the previous chapter, lightweight nodes don’t keep a
track of a full blockchain, therefore they download only the block headers
without the transactions. The resulting chain of blocks is much smaller than
the full blockchain. Because of this, they cannot construct a full picture of
any transaction and need to rely on an external node to get the partial view
of them [1]. This method is called simplified payment verification, or SPV.
These nodes are also called SPV nodes.

Let’s have a look at what a Merkle tree and Bloom filter are, before de-
scribing the verifying part of an SPV node.

1.7.1 Merkle tree, Merkle path

A Merkle tree is a data structure used to efficiently verify the integrity of
large sets of data. It is represented as a binary tree and it is constructed
recursively from bottom-up by hashing the pair of nodes until the root, which
is called Merkle root. The Merkle root is also included in the block header and
is used to summarize all the transactions. As seen in the figure 1.1, the leaves
are hashed transactions and its parent is a hash constructed by two children
hashes concatenated together and then hashed [1].

A Merkle path is a set of hashes that are necessary to prove that a specific
transaction is included in a block. For example, in order to verify a transaction
TxC (figure 1.1), the path would consists of the hashes HAB and HD. The rest
would be computed by the hashes provided by the Merkle path and then
compared with the root.

9

1. Cryptocurrency

Figure 1.1: The merkle tree taken from [1].

1.7.2 Bloom filter
Asking selectively to verify the transactions creates a privacy risk leading to
exposing the addresses and public keys associated with a user, thus completely
destroying the user’s privacy. This problem is resolved thanks to the feature
called Bloom filters.

A Bloom filter is a probabilistic data structure, that creates a space-
efficient filter describing a search pattern and is used to test membership
of an element. Bloom filter allows to specify a search for transactions that
can be balanced either towards precision or privacy. A more specific filter
will produce more accurate results, but at the expense of revealing the pat-
terns the node is interested in. On the other hand, a less specific filter will
produce more irrelevant transactions but maintain a better privacy. Despite
the structure being probabilistic, it generates only “false positives” but never
“false negatives” – in other words, it returns either a “possibly a match” or
“definitely not a match” [11].

Bloom filter is implemented as a bit array of N bits along with K hash
functions. The hash function will produce such an output that would be
matched to the 1–N bits and the bit is set to 1. The hash functions have to be
deterministic, so that every node can get the same results for a specific input.

To test for the existence of data, we hash it and check if the output numbers
are all set to 1 in the array. That means, the result is positive and it probably
is in the set. On the contrary, if the data is tested and any one of the bits
is set to 0, then it proves that the data was not recorded in a filter and it
certainly is not in the set.

1.7.3 SPV node verifying
SPV nodes verify a transaction by establishing a link with a node containing
a full blockchain. The SPV node creates a Bloom filter, adds and hashes the

10

1.8. Wallets

data the node is interested in, and then it will broadcast it. The peer will
respond with the transactions matching the filter and block headers, in which
the transaction lie, and with Merkle paths. The SPV nodes will afterwards
discard all the redundant transactions and use the Merkle path to connect the
transaction to the block and verify that it is included in the block. The SPV
node also uses the block header to link the block to the rest of the blockchain.
Together with these linkings, the transaction can be proved that it is recorded
in the blockchain.

1.8 Wallets

A wallet is an application that servers mainly as a user interface. It gives an
access to user’s coins, tracks the balance, manages keys and addresses, creates
and verifies transactions.

A common misconception about wallets is that wallets keep and contain
the coins. The wallets keep only the keys that prove the ownership of the
coins thus a wallet is basically just a keychain. The coins alone are recorded
in the blockchain on the network.

The article [12] defines two types of wallets describing how the keys are
created.

1.8.1 Non-deterministic wallets

A non-deterministic wallet generates a random number which represents a
key. Initially, this was the only method and is very hugely discouraged. Every
key would need to be backed up. Once the wallet is lost without a backup,
there is no way to restore the keys and therefore the funds would be lost. This
conflicts with the principle of key re-usage. Key re-usage decreases the privacy
because it creates a link between transactions and addresses. To avoid this
problem in this type of wallet, many keys would have to be created which leads
to frequent backup. Ideally, every address should be used for one transaction.

1.8.2 Deterministic wallets

The deterministic wallet is a standard for every cryptocurrency. The keys
are derived from a seed, which is randomly generated with other data and is
defined in the BIP32 (bitcoin proposal number 32) [12]. The seed is sufficient
to recover all the keys that are derived from it, hence the backup is only
needed for the seed. The seed is usually a bunch of letters, mostly a hash and
it is very hard to remember so the BIP39 solves this problem.

11

1. Cryptocurrency

BIP32

The BIP32 describes how the keys are created. The form of the wallets is
called Hierarchical Deterministic Wallet (HD wallet). The keys are derived
from a tree structure, where a parent key can derive a sequence of children
keys and each of them can derive a sequence of grandchildren etc. The seed
(the root of the tree), which is randomly generated, is an input to an algorithm
HMAC-SHA512 producing a hash that is split into master private key (m) and
master chain code (c). The corresponding master public key is generated by
the elliptic curve multiplication process m · G (G is a base point of a prime
order on the EC). The master chain code is used as an entropy to the function
that creates the children keys from the parent. That function is called child
key derivation or ckd.

The child key derivation consists of parent private and public key, the
chain code, which is basically a seed and an index number. The chain code is
used as a seemingly random data into the process of derivation, so the index
number itself is not sufficient to derive the children keys.

Parent public key, chain code and an index are concatenated together and
serve as an input to the hash algortihm HMAC-SHA512. The output is a hash
of 512 bits and is split into two halves. The left half with the index are added
to the parent private key to create a child private key. The right half is used
as the child chain code.

By changing the index, the derivation would produce the child in the
sequence, meaning index 0 would produce child-0, index 1 is child-1 etc. Every
parent key can have up to 2 billion children keys.

The child key derivation by public key exposes a potential risk where with
a knowledge of a child private key and the parent extended public key (an
encoded hash with the public key and chain code for the export to make a
public derivation tree) can be used to derive the rest of children private keys.
Not only that, the parent private key could be deduced from it. To prevent
this risk, the alternative form of derivation function is presented. It is called
hardened child key derivation, where the parent private would be used instead
of the parent public key. Using this method, the result of the derivation would
be different than using normal derivation function. The resulted branch of keys
can be used to produce public keys, which are not vulnerable, since the chain
code cannot be used to deduce the parent private key [1]. This method is
combined together with the normal ckd and can be used to create an effective
HD wallet tree structure, which is defined in BIP44. However, in my simplified
version, there is no need to use such a proposal.

BIP39

The BIP39 (defined in [13]) introduces the mnemonic code words – a sequence
of words, which represents the seed. This sequence is enough to re-create the

12

1.9. Transactions

wallet with all the derived keys. Mnemonic code words enable for the user
an easier backup of a wallet, since the words are easier to read and correctly
transcribed, compared to the random sequence number or hash. The process
of generating mnemonic code words works in a few steps as defined in the
BIP39:

1. Create a random sequence (entropy) from 128 to 256 bits.

2. Create a checksum of the entropy by taking the number of bits, depend-
ing on the size of the entropy.

3. Add it to the end of the entropy.

4. Divide the entropy into the section of 11 bits, which serves as an index
to the dictionary with pre-defined 2048 words.

The seed is then created by using the entropy as an input to a function
PBKDF2 using HMAC-SHA512 to stretch the hash (512 bits). It is then split
into two halves and those are used to build a deterministic wallet.

This along with BIP32 became a standard for the cryptocurrency but each
can have a different dictionary.

1.9 Transactions
Transactions are the most important part of the cryptocurrency. Everything
that is designed in the cryptocurrency is to ensure, that transactions can be
made, broadcast into the network, verified and added to the blockchain [1].

The life cycle of a transaction starts with the creation. Then it is signed
by the user, which proves that the coins are his. After it is broadcast to the
network where every node will validate it and broadcast further. Eventually,
the transaction is verified and validated by a mining node and included into
a block, which is added to the blockchain.

The transaction is a data structure, which encodes the exchange of coins
from the source called inputs to the target outputs. These transaction in-
puts and outputs are not associated with users (identities), but rather to the
amount of the coins locked by the secret (key signature) known only to the
owner. By providing the right signature, the owner can unlock it and spend
it.

1.9.1 Transaction outputs and inputs
The fundamental building block of a transaction is transaction output. Trans-
action outputs are indivisible data recorded on the blockchain and are recog-
nized as valid by the entire network. The one that are spendable are called
unspent transaction output, or UTXO and are tracked by the full nodes and
kept in a collection called UTXO set [1].

13

1. Cryptocurrency

Whenever a user “receives” the coins, it is recorded on the blockchain as
UTXO. Thus, the coins of the user can be scattered as UTXO between hun-
dreds of transactions and blocks. In fact, there is nothing such as a“balance”.
The concept of a “balance” is created by the wallet and it is a sum of all
UTXO belonging to the user by searching through the whole blockchain. This
however is a very difficult operation for lightweight nodes, and that’s why they
depend on the external full node.

Although an UTXO can have any amount when it is created, it is not
possible to split it. That means, if I have an UTXO with 20 coins, and want
to spend only half of it, I will have to create a transaction that has two
outputs. First to the target and second to myself. This output is referred as
a change [8].

This way, the transaction always consumes an UTXO and produces an-
other UTXO that can be used in the future.

The exception from the chain of outputs and inputs is a special type trans-
action called coinbase transaction, which was previously mentioned in the sec-
tion Mining. This transaction is always in the first place of the block and does
not consume any UTXO, instead it has a special type of input called coinbase
and has a slightly different information in the transaction input [14].

Transaction input is a pointer to the UTXO referenced by a hash of the
transaction where the UTXO is recorded as an output in the transaction. It
can be spent after providing a proof of ownership.

1.9.2 Transaction fee
Many transactions include a transaction fee, which are the reward for the
miners. The transaction does not include these automatically and affects the
priority of the processing. That means the greater the fee is, the faster it is
included in the next block. On the other hand, it could take many blocks or it
might not even be included. The fees are not mandatory and the transactions
without the fees might be eventually processed, although the process can be
encouraged by including a transaction fee to get a higher priority.

The transaction fee is set by the market strength which is influenced by
the capacity of the network and the amount of transactions and is calculated
based on the size of transaction in kilobytes rather than the coins in the
transactions [15].

The reason the fee is calculated in kilobytes is because the miners are
validating by looking through the transaction and the difficulty rises as the
transaction data is bigger. Therefore the fee is set to the size of the transaction
and not the amount.

The transaction as a data structure does not have a field for the transaction
fee. Instead of it, it is calculated as the difference between the sum of inputs
and the sum of outputs.

14

Chapter 2
Analysis and Design

In this chapter I will introduce the analysis of the current state of mobile
wallets, explain the FITcoin as a cryptocurrency, specify the requirements of
the wallet application, and then present the similar applications and what
they support.

Based on the analysis from the first part, I will then describe the design
and design choices of the application needed to fulfill the requirements and
the communication protocol.

2.1 FITcoin as a cryptocurrency
FITcoin is a trivial form of cryptocurrency based on Bitcoin. It uses the same
curve and domain parameters. Specifically the secp256k1, whose parameters
are defined in [6].

2.1.1 Hash functions
The hash functions used in FITcoin are SHA-256 and RIPEMD-160. Similarly
to Bitcoin, every hash is calculated twice. It means, the hash function is ap-
plied twice on a data set. Specifically, hash_256 = sha256(sha256(data)).
In case the shorter hash is needed, it is hashed in this way: hash_160 =
ripemd160(sha256(data)). The only reason for the shorter hash is to have
a shorter hash (160 bits instead of 256 bits).

2.1.2 Keys, addresses
Keys are generated by the algorithm ECDSA and addresses are a derived form
of public keys by hashing with hash_160.

The Bitcoin address contains extra information such as checksum and a
version, which is then encoded in the Base58. This format has its advantages
for users. The encoding removes the visually identical looking characters and

15

2. Analysis and Design

with the combination of the checksum it is durable against mistakes when
transcribing the address.

The default FITcoin format for users is hexadecimal version of the hash –
without the version and checksum. The length of such format is 40 bytes with
the leading zeros. However, the mobile wallet application will be supporting
the Base58 format.

2.1.3 Transactions
The structure of transactions in FITcoin is again very similar to Bitcoin trans-
action. Unlike Bitcoin transaction, the FITcoin one contains less fields, specif-
ically the transaction script language, instead the signature will replace it
(almost identical to the scriptSig in Bitcoin, which is used to verify the
ownership).

The smallest value of the coin is one fitcoin (FTC) and is principally the
same as 1 satoshi in Bitcoin (the smallest unit in Bitcoin corresponding to the
value of 1 · 10−8 bitcoin).

2.2 Target base
The target base of the application contains everyone who is interested in cryp-
tocurrencies and wants to handle them. This should be accounted in order to
design the application as simple as possible yet containing all the functionality
required for a mobile wallet.

2.3 State of the Art
This section serves as a key factor when developing the application, pinpoint-
ing the flaws which should be considered in one’s application. In my case, I will
examine and focus mainly on graphical side and what they do support since
my wallet will be focused on the FITcoin instead of the existing currencies
such as Bitcoin, Ethereum, etc…

2.3.1 “Bitcoin Wallet”
The application was chosen for the analysis because it is the most downloaded
wallet for Bitcoin with over one million downloads. It supports the basic stuff
such as sending and receiving transactions and backup. The restoring process
is slightly difficult. It requires the user to put the backup file into the specific
folder which could be hard for a person without technical knowledge.

The GUI is slightly bugged, the first page is blank with no title and no
content. When turning the phone horizontally, the GUI changes significantly.
This phenomenom can be seen in the figure 2.1.

16

2.3. State of the Art

Figure 2.1: Bitcoin wallet screenshots.

2.3.2 Mycelium

Mycelium is the most advanced wallet there is. It offers many functionality
mostly for the advanced users. The UI is very nice as seen in the figure 2.2.
It supports 100% control over private keys, HD wallet manager, key export-
ing, connection through Mycelium super nodes and much more. Mycelium
supports multi-accounts and random key generator. The only disadvantage I
found is that the application does not show or give a possibility to view the
keys in the HD account.

Figure 2.2: Mycelium screenshots from [2].

.

17

2. Analysis and Design

Functional Requirements

F1: Create an account
F2: Restore an account
F3: Key manager
F4: Track the balance
F5: Send and receive transactions

Non-functional Requirements

NF1: Security
NF2: Availability
NF3: Simple UI
NF4: Reliability
NF5: Data integrity

Figure 2.3: Application requirements

2.3.3 Coinomi
Coinomi is a very simple application and very easy to use. It supports like
every wallet the basic functions with transactions. The only thing I found
hard to use is key manager. Coinomi does not let users choose the keys to
manipulate with. As far as UI is concerned, it is very simple and contains all
the information needed for a user to find.

2.4 Application requirements
The application has a set of requirements it needs to fulfill. It can be divided
into two types of requirements – functional and non-functional requirements.
The functional requirements describe the behavior of the application, while
non-functional specifies properties or restrictive conditions of the application.
The requirements can be seen in the 2.3.

2.4.1 Functional requirements
The functional requirements are described as follows:

F1: Create an account The application will create an account without any
registration on an initial start-up of the application and afterwards will
work only on one account.

F2: Restore an account The application will be able to restore the ac-
count thanks to the BIP32 and BIP39, which will be implemented in
the application.

F3: Key manager The application will manage keys for the account, there
will be an option to create keys, delete keys and label the keys so the
user knows what the key is used for.

F4: Track the balance The application will track the balance of each key
by storing the database keeping the updated UTXOs.

18

2.5. Architecture

F5: Send and receive transactions The application will be able to create
transactions and send them to other nodes and receive them.

2.4.2 Non-functional requirements
The non-functional requirements are described as follows:

NF1: Security The application should be safeguarded against the faults
such as inserting the wrong restore words or sending invalid transac-
tions.

NF2: Availability The application should have an access to the internet to
send and receive transactions. The history of transactions can be viewed
offline.

NF3: Simple UI The application should have a simple UI in order for ev-
eryone to tell where is what and use it comfortably.

NF4: Reliability The application should have minimal failure rate and the
respond time of the apllication should be fast.

NF5: Data integrity The application will save all the monetary info accu-
rately in an integer. The DB should be safeguarded against mistakes or
changes in them.

2.5 Architecture
The implementation will try to follow the MVC (Model-View-Controller) pat-
tern. The application is split into three layers: models, views and controllers.
Thanks to the Android syntax, the view part is split by default as the XML files
in the folder app/res/*. The controller ensures the communication between
the view part and the model part, which represents the data layer to get the
saved and downloaded data.

The reason I have chosen this architecture is because it provides easier
maintenance of the application in the late developing phase and changing any
of the layer would project minimal changes to the other.

2.6 Communication protocol
The communication protocol is realized via message exchange. In the decen-
tralized network, the messages are broadcast to the other nodes and based on
the trust, the node accepts back the transmitted data. The available com-
mands with the header structure can be found in the chapter Documentation.

Furthermore, as SPV node, the Bloom filter plays a huge role in the com-
munication, which prevents and protects the user’s privacy while getting the

19

2. Analysis and Design

current transactions of the specific key owned by the user. The Bloom filter
is implemented as [16], where the author analyzed the math behind it. Worth
mentioning is the math equations for k, the number of hash functions and m,
the size of the bloom filter. The equation takes in the parameters n, which
is the number of elements and p as probability of false-positive rate. In my
application, I use p = 0.0005, which is 0.05% and the number of elements
derive from the amount of keys and addresses the user owns. The equations
are as follows:

m =
n log(1

p)
log2(2)

, k = m log(2)
n

2.7 Transaction design
The transaction in the FITcoin is much more trivial than Bitcoin and consists
of version, vin (a list of inputs) and vout (a list of outputs). The current
version is 1 and it gives us an opportunity to change the format in the future
and keeps the validity of the older transactions.

Input consists of txid in a form of Outpoint, which is the hash of a
previous transaction to which the input is referencing, vout_idx – an index
to the list of output referenced to in the txid and lastly the tx_sig, which is
a transaction signature. The transaction signature consists of two parts. The
signature alone and the the public key used to verify the signature.

The output consists of value and address and indicates how much FTC
the address will “receive”.

The domain model of the transaction in FITcoin can be seen in figure 2.4.

1
contains ▷

1..*

1

contains ▽1..*

1

contains ▽1

◁ signs
1 1

Transaction

- version

TxSignature

- signature
- public_key

Input

- vout_idx

Outpoint

- txid

Output

- address
- amount

Figure 2.4: Domain model describing the transaction

20

2.8. Storage design

2.8 Storage design
For the data storing I have chosen SQLite, which provides a relational database
management system. According to [17], the SQLite is “the most widely de-
ployed database in the world…”

SQLite is known for its properties and features, it is self-contained, server-
less, needs zero configuration and is transactional. That makes the SQLite
usable in environments such as mobile phones and does not need a separate
server to operate with.

As far as security is concerned, the database is encrypted with the algo-
rithm 256-bit AES in CBC mode and each database page is encrypted individ-
ually with its own randomly generated initialization vector. This is realised
thanks to the SQLCipher [18].

To prevent data manipulation outside of the application, the tables contain
an extra field for checksum, to test if the data is not corrupted.

The relational database can be seen in figure 2.5

1 1..*
has ▷

1 1..*

lies in ▷0..*

1

Account

- id: Integer [PK]
- selected: Integer
- seed: Blob

Keys

- priv: Blob [PK]
- pub: Blob
- checksum: Blob
- idx: Integer
- label: String
- address: Blob

Block Header

- hash: Blob [PK]
- prevhash: Blob
- time: Long
- merkleroot: Blob
- target: Long
- nonce: Integer

Utxo

- tx_hash: Blob [PK]
- tx_index: Long
- address: Blob
- value: Integer

Transaction

- tx_hash: Blob [PK]
- block_hash: Blob
- time: Long
- tx_data: Blob

Figure 2.5: Relational model

21

2. Analysis and Design

2.9 Wireframes
For the design of the UI, I used the tool called Mockplus [19]. It is a pow-
erful tool which helps quickly build the wireframes for the application. The
interaction is visualized with a simple drag-and-drop components, basically
WYSIWYG (What You See Is What You Get). The wireframes help the de-
velopers to adapt to the design and additionally it allows for the second party
to know how the application will look.

As seen in figure 2.6, the main window consists of three fragments – ac-
counts, balance and transactions. The account fragment gives an opportunity
to create more deterministic keys, the balance fragment tracks all the utxo for
the chosen key and the transaction fragment shows the list of the executed
transactions. The fragment switching can be toggled either by swiping to the
left or right side, or by clicking on the bottom navigation menu.

The wireframes of the actions can be seen in figure 2.7. The first screen
describes the receive activity with a single input for the amount and a QR code
which updates upon changing the amount. The second screen is transaction
information showing its ID, the date and the amounts. The last shows the
send activity, upon clicking the camera icon, the person can scan the QR code
made from the main page or the receive.

Lastly, the wireframes of the setup page can be seen in figure 2.8. It gives
the user an opportunity to create or restore the wallet. Upon clicking on
create button, the twelve word list is generated and instructs the user to write
it down, while clicking on the restore button will show the user a keyboard
and enables inserting the twelve word list. If the user inserts more than two
letters, the three suggestions will always show up.

22

2.9. Wireframes

Figure 2.6: Wireframes of the main page.

Figure 2.7: Wireframes of the actions.

23

2. Analysis and Design

Figure 2.8: Wireframes of the set-up page.

2.10 Models
This section will describe the models of the final application.

2.10.1 Sending the transaction
Sending a transaction is one of the main processes of the wallet. The main goal
is to enable the user to send the transaction comfortably. If the user won’t
have enough coins, it will warn the user about insufficient coins. In other
case, the transaction will then be broadcast to the network and accepted if
the transaction data is valid. The network will write it into the transaction
pool, where it will await for the miner to find the block, and send back the
message about its success. The activity diagram can be seen in figure 2.9.

2.10.2 Use cases
This part of section is about use cases which describe how the user can work
with the application. These use cases can be seen in figure 2.10.

24

2.10. Models

Figure 2.9: Activity diagram of sending the transaciton.

25

2. Analysis and Design

Figure 2.10: The use cases of the final application.

26

Chapter 3
Implementation

3.1 Language
For the development I have chosen Java which is the oldest and also the most
used language for Android development. The alternative is Kotlin developed
by JetBrains [20] and is relatively new so the community isn’t so expanded
as Java’s and that’s the primary reason why I have chosen Java. Most of the
problems are already solved in Java and to find such a solution is much easier.

3.2 Development tools
In this section, I will describe the tools used while developing the application.

3.2.1 IDE
Android Studio is an official IDE created for the development for Android [21].
I have chosen this IDE because it is a good starting point for a beginner in
Android development and this IDE is very easy to use.

3.2.2 Version control
For the version control I have chosen the web-based Git repository manager
FIT Gitlab which tracks all of the changes in the development and all the
commits were controlled by the desktop program GitHub Desktop [22].

3.2.3 UML diagrams
The diagrams were created in the Enterprise Architect in the UML language
except for the relational model and domain model, which were created in the
TikZ-UML. The program Enterprise Architect is used for creating diagrams

27

3. Implementation

describing the developing process, which leads to the generation of analytic
documentation.

3.3 Libraries
The application relies on a few external libraries which helps and makes the
development easier and safer.

3.3.1 Bouncy Castle
Bouncy castle is a lightweight crypto library. All the cryptographic opera-
tions and functions are realized via it – the hashing, operations over keys and
signatures.

3.3.2 Zxing
Zxing supports the manipulation with QR codes, reading them and creating
them. In my application it is used to generate the address and reading the
QR code of the address to create and send a transaction.

3.3.3 SQLCipher
SQLCipher as mentioned in the previous chapter Analysis and Design section
Storage design on page 21, is a library that cryptographically secures the
SQLite data by encrypting it with AES-256 in CBC mode.

3.4 Developing process
As I am a beginner in Android development, I had to try the functionality of
the Android so I started on small applications with individual features of the
final application.

3.4.1 First steps
In the first application I tried to establish a connection between a client and a
server. The first problem I came across right after creating a socket was that
the Android didn’t support opening a socket on the main thread and therefore
the side thread had to be created for it. After the connection was established,
the server and client had to communicate in some way. I created few data on
the server-side program and communicated with it by simply exchanging the
plain text messages to retrieve the data and sent back.

The second application was about the encryption and cryptography. The
native cryptography library from Android is not sufficient and that’s why
I had to look for an alternative solution. I tried JNI (Java Native Interface),

28

3.4. Developing process

which is a framework that enables Java to call functions from other libraries
written in another languages, to import the OpenSSL but I couldn’t make it
work so after a few attempts, I have chosen the Bouncy Castle.

After deciding over the crypto library, the key creation had to be studied.
The Android supports its own version of PrivateKey and PublicKey which
could be generated only together and randomly from KeyPair. Thankfully,
the Bouncy Castle gives an opportunity to create a public key from a spe-
cific private key by using direct operations over the elliptic curve with the
predefined variables.

However, this created another problem – a signature. The Android has
its own Signature and requires the native PrivateKey and PublicKey as the
input so I had to find a Bouncy Castle solution.

After a few trials, I found the first solution but it required the conversion
from the BigInteger to ECPublicKey and ECPrivateKey. This was very
ineffective so after a little research I found out about ECDSASigner. Thanks to
this method, the problem with conversion was solved including the randomness
in signature by presenting a deterministic k calculator, which processes the k
with the data itself, therefore for each transaction the algorithm produces a
different k. The standard algorithm for deterministic k calculator is described
in RFC 6979 [23].

The next step was to find a way to store the data information, specifically
the keys. Again, the Android offers KeyStore but works only for their native
keys and furthermore I needed to save multiple keys in my application and
this would be very ineffective. That’s why I decided to use the SQLite.

3.4.2 The final realisation
After a few attempts on smaller applications, the features were put together
and created into a new project. Many things were modified and furthermore
added and currently, the application’s structure looks like this:

Activity the package containing the activities
Core..............................the cryptocurrency model and settings

Bip39......................... the BIP39 implementation and models
Model contains the data structure of cryptocurrency
Wallet contains the data structure of the wallet

Fragments..........................activity fragments of the application
Network.........................network communication and its settings

Commands the available commands to use in the application
Messages the interface and messages available to send
Responses............the interface and responses available to retrieve

Random...........the package with random interface and implementation
StorageSQLite data storage and table definitions
Utils................................ the package with the useful classes

29

3. Implementation

3.5 Code preview
In this section, I will introduce some code previews of the application con-
cerning the transaction creation and network communication.

3.5.1 Messages and responses
The messages are realized via simple socket TCP/IP implementation and is es-
tablished in the AsyncTask connection handler, where the message is executed.
The messages are an implementation of the interface IMessage seen in the list-
ing 1. The same applies to the responses. The responses are then processed in
the onPostExecute(IResponse response) of the connection handler. This
can be seen in the listing 2.

public interface IMessage {

/**
* Executes the message and returns the response
* @param out the outputstream of the socket
* @param socket the connection socket with the other node
* @return response
*/
IResponse execute(DataOutputStream out, Socket socket);

}

Listing 1: Interface of the message

3.5.2 Transaction creation
The code below in the listing 3 describes the transaction creation, which is
called when a user triggers the send action. It looks through the local utxo
database if the user has sufficient coins to send. After the construction of
List<TransactionInput> and List<TransactionOutput>, it is used to con-
struct a Transaction, where the selectedKeys is used to sign the inputs.

30

3.5. Code preview

/**
* An interface of the response
* @param <T> The generic data type which will be processed and returned
*/

public interface IResponse<T> {

/**
* Gets of the data that was sent
* @return the data
*/
T getData();

/**
* Checks if the communication failed
* @return true if the communication failed
*/

boolean failed();

/**
* Returns a human readable message
* @return a message
*/
String message();

/**
* Process the data
* @param context context
*/

void process(Context context);
}

Listing 2: Interface of the response

31

3. Implementation

public Transaction constructTransaction(){

if(amount.getText().length() == 0 ||
address.getText().length() == 0) {

showErrorDialog("The address or amount can't be empty.");
return null;

}
int am = Integer.valueOf(amount.getText().toString());
int sum = 0;
List<TransactionInput> inputs = new ArrayList<>();

// construct the inputs
for(UnspentTransactionOutput utxo: this.utxo){

if(selectedKeys.getAddress().getEncoded()
.equals(utxo.address.getEncoded()))

{
inputs.add(new TransactionInput(utxo.outPoint,
utxo.tx_id));
sum += utxo.amount;
if(sum > am + Parameters.fee) break;

}
}
if(sum < am+Parameters.fee) {

showErrorDialog("You have unsufficient assets.
The transaction couldn't be created.");
return null;

}

// construct the outputs
List<TransactionOutput> outputs = new ArrayList<>();
outputs.add(new TransactionOutput(am,
new Address(address.getText().toString().getBytes())));

// construct change
if(sum-am-Parameters.fee > 0){

outputs.add(new TransactionOutput(sum-am-Parameters.fee,
selectedKeys.getAddress()));

}
return new Transaction(inputs,outputs,selectedKeys);

}

Listing 3: Code preview of transaction creation

32

Chapter 4
Documentation

4.1 Javadoc
Javadoc is a documentation system to generate the documentation in HTML
format from Java source. It is useful to comment on the classes, interfaces and
methods to ensure people understand what they are used for. The technical
java documentation was generated through the IDE Android Studio and can
be found in the attachments.

4.2 Available network messages
The network messages are developed by the student Bc. Karel Pajskr. The
list of available commands is described below.

Message structure

Field name Data type Field size Comments
magic value uint32_t 4 {0xf9, 0xbe, 0xb4, 0xd9}
command char[12] 12 the type of command
length int 4 the length of the data

version
This command is sent by the node that establishes the connection.

Field name Data type Field size Comments
version int_t 4 the version of the client

33

4. Documentation

getaddr
The command to get the known peers (nodes in the network).

addr
The message with the list of IP of the peers.

Field name Data type Field size Comments
address count int 4
IP addresses {uint32_t IP, uint16_t port}

inv
The response to the command getblocks or broadcasting the hash of the new
transaction or block to the other peers.

Field name Data type Field size Comments
count uint32_t 4 the size of the inventory
inventory inv_vec [count]

The structure of the inv_vec looks like this:

Field name Data type Field size Comments
type uint8_t 1 which type of the hash it is
hash uint8_t[32] 32 the hash

notfound
The response to the command getdata. It is sent if no hash is found.

Field name Data type Field size Comments
count uint32_t 4 the size of the inventory
inventory inv_vec [count] hashes that couldn’t be found

tx
The response to the getdata. It contains only one serialized transaction.

34

4.3. User manual

4.3 User manual
As this is a very simple mobile wallet application, there is only a few actions
that can be triggered. The list of available actions is described below in the
table 4.1. The screenshots of the usage can be found in the attachments.

Table 4.1: User manual

Item Description
[Initial wallet creation] When turning on the application for the first time,

there will be a choice to create a wallet. When you
click on it, the 12 word list phrase will show up with a
button to continue. Upon clicking on the button, the
wallet is created.

[Restore the wallet] When turning on the application for the first time,
there will be a choice to restore the wallet. When you
click on it, the application will ask you to fill the 12
word list phrase to restore the wallet. The 12 word list
is afterwards checked if it is correct.

[Add key to the account] To create a key, you have to be at the Accounts tab
and press on the image button which represents the
key creation. When you click on it, there will be a
possibility to label the key.

[Delete a key] To delete a key, you have to be at the Accounts tab and
press on the key you want to delete. Afterwards the
menu will pop up and simply click on the delete button,
which is represented by the trash bin logo. However,
the balance of the key must be zero, otherwise there
won’t be a possibility to delete it.

[Rename the key] To rename a key, you have to be at the Accounts tab
and press on the key you want to rename. The menu
will pop up with a icon of the pencil for renaming.

[Send a transaction] To send a transaction, you have to be at the Balance
tab and press on the button Send. The new activity
will pop up asking for the address of the recipient and
the amount you want to send. There is a choice to scan
the QR code of the prepared address with the amount
or simply only the address.

[View a transaction] To view a transaction, browse to the Transactions tab
and click on the transaction that you want to view.

35

Chapter 5
Testing

This chapter will be concerned about testing, which is one of the most impor-
tant process while developing an application. The purpose of this is to ensure
that the application works correctly with the least errors. For the testing, I
have prepared the unit testing and user testing.

5.1 Unit testing
The Unit testing is focused on the functionality of the classes and does not
need the access to the database or application context. The Unit testing is
realized via JUnit framework which is written in Java [24].

The most important is to ensure that the cryptocurrency core classes work
always correctly, therefore for the Unit testing, I have created 5 test suites
representing the parts of the core with 19 test cases. The test suites can be
found in the attachments.

5.1.1 Results
The tests helped me solve multiple problems, mostly it were the serialisation of
the transaction which is a very important part of the wallet. The serialisation
needs to be exact and fulfill the form so the consensus over the network would
work.

5.2 User testing
The user testing’s purpose is to test the practical use of the application. For
this testing, the test application is prepared with the test scenario and the
outcome of the scenario. The testers will follow this scenario and if the ap-
plication’s behaviour is the same as the outcome, the test is fulfilled. In the
other case, it is not and the application behaviour is reported back.

37

5. Testing

5.2.1 Test scenarios
The first scenario is to create a key and label it with the string “mykey”. The
outcome of such scenario is the added key with labeled string showing in the
Accounts tab.

The second scenario is to switch between keys in the account. This change
will affect the Balance tab, where the sum and the key should be the one that
a user have chosen.

The third and fourth scenario is creating and sending the transaction.
One is with the sufficient amount, the other test is not. When inserting the
sufficient amount, the transaction should be created and broadcast to the
network. In such case, either the connection can’t be established or it will
successfully be sent and the balance should change. In the other case the
users should be warned by the dialog saying there is not sufficient assets to
spend.

The fifth scenario is about receiving the transactions by clicking on the
refresh icon in the top menu. The user should receive a message about the
success of fetching the data and on the Transactions tab, a new transaction
should pop up.

5.2.2 Results
The results were all successful and no unexpected nor wrong behaviour was
found while testing it. The group of testers were mostly students of CTU
FIT for which I thank them for participating in the testing. There were small
issues but all of them were fixed immediately.

5.2.3 Important note
The tests were tested with the dummy implementation of the network since
Bc. Karel Pajskr did not manage to finish his Bachelor’s thesis in time.

38

Conclusion

The goal of the thesis was to create a functional prototype of mobile wallet
on operating system Android, which will support the basic functions such as
creating and sending the transactions, retrieving them and maintaining the
balance on the account.

The prototype was created in Java language with additional features such
as restoring the account or creating more keys into the account. The prototype
was documented, thoroughly tested in the JUnit environment and by the users.

Unfortunately, the network communication, which was developed by the
student Bc. Karel Pajskr, was not finished in time and therefore the dummy
implementation had to be created for the application.

The future plans of the application could be support of more languages,
work over more than one account and the possibility to restore more than one
wallets (a trezor). As far as security is concerned, the application could be
secured by the password and the database with the user entered password.

39

Bibliography

[1] ANTONOPOULOS, A. Mastering Bitcoin: Programming the open
blockchain. O’Reilly Media, Inc, USA, second edition, 2017.

[2] Mycelium Developers. Mycelium [online]. [cit. 2018-04-07]. Avail-
able from: https://play.google.com/store/apps/details?id=
com.mycelium.wallet

[3] Einstein.Exchange. Bitcoin Basics Lesson 2: Essentials of Bitcoin [on-
line]. [cit. 2018-03-11]. Available from: https://medium.com/einstein-
exchange/bitcoin-basics-lesson-2-5727b9591a78

[4] DJEMILEVA, E. Aplikace eliptických křivek v kryptografii. Master’s the-
sis, Bankovní institut vysoká škola Praha, Praha, 2014.

[5] Techwalla. What Are the Advantages & Disadvantages of Elliptic Curve
Cryptography for Wireless Security? [online]. [cit. 2018-03-11]. Avail-
able from: https://www.techwalla.com/articles/what-are-the-
advantages-disadvantages-of-elliptic-curve-cryptography-
for-wireless-security

[6] Certicom Research. SEC 2: Recommended Elliptic Curve Domain Pa-
rameters. [cit. 2018-03-11]. Available from: http://www.secg.org/sec2-
v2.pdf

[7] CHOHAN, U. The Double Spending Problem and Cryptocurrencies. Uni-
versity of New South Wales (UNSW), UNSW Business School, discussion
Paper.

[8] NAKAMOTO, S. Bitcoin: A Peer-to-Peer Electronic Cash sys-
tem [online]. [cit. 2018-03-13]. Available from: https://bitcoin.org/
bitcoin.pdf

41

https://play.google.com/store/apps/details?id=com.mycelium.wallet
https://play.google.com/store/apps/details?id=com.mycelium.wallet
https://medium.com/einstein-exchange/bitcoin-basics-lesson-2-5727b9591a78
https://medium.com/einstein-exchange/bitcoin-basics-lesson-2-5727b9591a78
https://www.techwalla.com/articles/what-are-the-advantages-disadvantages-of-elliptic-curve-cryptography-for-wireless-security
https://www.techwalla.com/articles/what-are-the-advantages-disadvantages-of-elliptic-curve-cryptography-for-wireless-security
https://www.techwalla.com/articles/what-are-the-advantages-disadvantages-of-elliptic-curve-cryptography-for-wireless-security
http://www.secg.org/sec2-v2.pdf
http://www.secg.org/sec2-v2.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

Bibliography

[9] Anon. Everything you need to know about Bitcoin mining [online]. [cit.
2018-03-13]. Available from: https://www.bitcoinmining.com/

[10] Investopedia. 51% attack [online]. [cit. 2018-03-13]. Available from:
https://www.investopedia.com/terms/1/51-attack.asp

[11] HASSAN, A. S. Probabilistic Data structures: Bloom filter [online]. [cit.
2018-03-15]. Available from: https://hackernoon.com/probabilistic-
data-structures-bloom-filter-5374112a7832

[12] WUILLE, P. Hierarchical Deterministic Wallets [online]. 2012, [cit.
2018-03-17]. Available from: https://github.com/bitcoin/bips/blob/
master/bip-0032.mediawiki

[13] PALATINUS, M.; RUSNAK, P.; VOISINE, A.; et al. Mnemonic
code for generating deterministic keys [online]. 2012, [cit. 2018-03-
17]. Available from: https://github.com/bitcoin/bips/blob/master/
bip-0039.mediawiki

[14] MORROW, J. What is coinbase transaction? [online]. [cit. 2018-
03-18]. Available from: https://blog.cex.io/bitcoin-dictionary/
coinbase-transaction-12088

[15] COHEN, B. How wallets can handle transaction fees [online]. [cit.
2018-03-18]. Available from: https://medium.com/@bramcohen/how-
wallets-can-handle-transaction-fees-ff5d020d14fb

[16] CORTESI, A. 3 Rules of thumb for Bloom Filters [online]. [cit. 2018-
04-16]. Available from: https://corte.si/posts/code/bloom-filter-
rules-of-thumb/index.html

[17] SQLite developers. SQLite – SQL database engine [online]. [cit. 2018-04-
14]. Available from: http://sqlite.org/index.html

[18] Zetetic, LLC. SQLite Cipher [library]. [cit. 2018-04-17]. Available from:
https://www.zetetic.net/sqlcipher/

[19] Jongde Software LLC. Mockplus [software]. [avail. 2018-04-25]. Available
from: https://www.mockplus.com/

[20] JetBrains. Kotlin Programming Language [online]. [avail. 2018-04-27].
Available from: https://www.kotlinlang.com/

[21] Google Inc. Android Studio – The Official IDE for Android [online].
[cit. 2018-04-10]. Available from: https://developer.android.com/
index.html

[22] GitHub, Inc. GitHub Desktop [software]. [avail. 2018-04-25]. Available
from: https://desktop.github.com/

42

https://www.bitcoinmining.com/
https://www.investopedia.com/terms/1/51-attack.asp
https://hackernoon.com/probabilistic-data-structures-bloom-filter-5374112a7832
https://hackernoon.com/probabilistic-data-structures-bloom-filter-5374112a7832
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0039.mediawiki
https://blog.cex.io/bitcoin-dictionary/coinbase-transaction-12088
https://blog.cex.io/bitcoin-dictionary/coinbase-transaction-12088
https://medium.com/@bramcohen/how-wallets-can-handle-transaction-fees-ff5d020d14fb
https://medium.com/@bramcohen/how-wallets-can-handle-transaction-fees-ff5d020d14fb
https://corte.si/posts/code/bloom-filter-rules-of-thumb/index.html
https://corte.si/posts/code/bloom-filter-rules-of-thumb/index.html
http://sqlite.org/index.html
https://www.zetetic.net/sqlcipher/
https://www.mockplus.com/
https://www.kotlinlang.com/
https://developer.android.com/index.html
https://developer.android.com/index.html
https://desktop.github.com/

Bibliography

[23] PORNIN, T. Deterministic Usage of the Digital Signature Algorithm
(DSA) and Elliptic Curve Digital Signature Algorithm (ECDSA) [on-
line]. [avail. 2018-04-27]. Available from: https://tools.ietf.org/
html/rfc6979

[24] The JUnit Team. JUnit 5 [library]. [avail. 2018-05-07]. Available from:
https://junit.org/junit5/

43

https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc6979
https://junit.org/junit5/

Appendix A
Acronyms

GUI Graphical user interface

ECC Elliptic Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

P2P Peer-to-peer

UTXO Unspent transaction output

IDE Integrated Development Environment

45

Appendix B
Contents of enclosed CD

fitcoin.apk...............the application package of the final prototype
documentation..........the directory with the generated documentation
screenshots..........................the directory with the screenshots
src...the directory of source codes

app...implementation sources
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
thesis.pdf............................the thesis text in PDF format

47

	Introduction
	Goal
	Cryptocurrency
	What is cryptocurrency?
	Elliptic Curve Cryptography
	Keys, addresses
	Blockchain
	Mining
	Network
	Lightweight nodes
	Wallets
	Transactions

	Analysis and Design
	FITcoin as a cryptocurrency
	Target base
	State of the Art
	Application requirements
	Architecture
	Communication protocol
	Transaction design
	Storage design
	Wireframes
	Models

	Implementation
	Language
	Development tools
	Libraries
	Developing process
	Code preview

	Documentation
	Javadoc
	Available network messages
	User manual

	Testing
	Unit testing
	User testing

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

